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Lecture #1 begins here

Introduction

What are Colloids?

The word “colloid” is not widely used in ordinary
English, although you can find it listed in most
dictionaries. This word was coined in the 1860’s by
Thomas Graham from the Greek word kolla meaning
glue. Today the word is used in the technical
literature to describe something related to glue but
also quite different. For the purpose of this course, I
will define colloid as follows:

lyophobic colloid – a state of mixtures of two
immiscible components in which one
component is finely divided as bubbles,
drops or particles in a second (usually
continuous) phase

By “finely divided” we mean that at least one
dimension is in the range 10–9 m to 10–6 m. The size
is perhaps the most important aspect of the definition
– as we will see in a moment – because it is the size
of the particles which distinuish this state of mixtures
from others.

For comparison, let me give a similar definition
for a more familiar state of mixtures:

thermodynamic solution - a state of mixtures
of two (miscible) components in which
the molecules of one component (the
solute) are each completely surrounded by
molecules of the second component (the
solvent).

The important difference is that in a solution the
solute molecules are completely separated from each
other, whereas in a colloid, clusters of molecules of
one component are surrounded by a sea of the other
component. The following figures shows three
different states for mixtures of two components
indicated by the black and white colors:

 lyophobic literally means solvent hating or solvent
fearing. Wiktionary defines it as “having no affinity for the
dispersion medium and thus easily precipitated.”

Consider two components like benzene and water. If
we vigorous stir the mixture with a waring blender
we can produce an emulsion of oil droplets in water.
This is a simple and familiar example of a colloid.

emulsion – droplets of one liquid finely
divided in a second immiscible liquid (e.g.
benzene in water)

The reason that these two components are immiscible
in each other is that molecules of benzene would
prefer to be in the vicinity of other benzene
molecules rather than near molecules of water. While
molecules in the interior of colloidal particles are
"happy" because they are in contact with "friends,"
those on the surface of the particle (droplet) are
"unhappy" because they can see "foes." The
collective happiness of the entire group can be
increased if all the oil droplets combine to form one
large droplet. Then fewer molecules lie on the
boundary between the two phases.

In this case, the colloidal state is not thermody-
namically stable because it tends to revert to the
original state of the mixture before mixing in which
the oil and water for two separated layers of liquid.
This represents the third state of mixtures of two
components: totally separated phases.

Other household examples of colloids include:

 salad dressing, mayonnaise (L/L)
 paint, ink, xerographic fluids (S/L)
 fog (L/G)
 smoke (S/G)
 magnetic recording tape (S/S)

Most of these familar household products are useful
only if they maintain their colloidal state. For
example, if the polymer particles in latex paint were
to combine to form a continuous layer of polymer in
the bottom of the can (with a layer of water on top),
you would be unable to spread the polymer on the
wall.

separated
phases

thermodynamic
solution

colloid
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So maintaining the colloidal state (which is often
thermodynamically unstable) is an important problem
in colloid science. Another important problem is the
inverse of this problem: getting a colloidal dispersion
to revert to separated phases. Once you spread the
paint over the wall, you want the polymer par
combine together to form a continuous film which
will protect the substrate from the environment.

In this course, we will try to understand why
colloids are generally unstable, how they can be
partially stabilized, and once stabilized how they ca
be destabilized. We will also learn how to
characterize colloids and we will learn about other
kinds of behavior that they display.

Some Model Lyophobic Colloids

The above are 2 m spheres of ZnS also known as
sphalerite. These four micrographs were t
Hunter Vol. 1, Fig. 1.5.2 and 3.

These are 1 m cubes of CdCO

Some Lyophilic Colloids

Besides mixtures of immiscible phases, there are
also soluble macromolecules which have colloidal
lengths or which self-assemble into structures having
colloidal lengths. These are called
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paint over the wall, you want the polymer particles to
combine together to form a continuous film which
will protect the substrate from the environment.
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colloids are generally unstable, how they can be
partially stabilized, and once stabilized how they can
be destabilized. We will also learn how to
characterize colloids and we will learn about other
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phases, there are
also soluble macromolecules which have colloidal

assemble into structures having

lyophilic colloid – a thermodynamic solution
of a macromolecule having colloidal
dimensions or a small molecule which
self-assembles to form structures having
colloidal dimensions

Examples of macromolecules which are
in water are DNA, proteins, polysaccharides (starch)
and poly(acrylic acid).

Small molecules which can self
colloidal structures are called

surfactants – small molecules which
an affinity for the interfaces between two
immiscible phases

By affinity, I mean tending to adsorb at these
interfaces. A typical surfactant is sodium
dodecylsulfate or SDS:

The zigzag portion of this molecule contains 12
methyl (CH2) groups and is an alkane chain. If we

eliminate the sulfate group, we have dodecane, which
is an oil (immiscible in water but miscible in other
oils). But owing to the polarity of the sulfate group
(SO4

–), SDS is quite soluble in water.

Not only do surfactants adsorb at interfaces, but
they also tend to self-assemble to form larger
structures in solution, as illustrated below

Adsorption of surfactants, tends to reduce the
interfacial energy (surface tension) which can slow
the rate of aggregation of thermodynam

 lyophilic means solvent loving. Wiktionary
“having an affinity for the dispersion medium and thus not
easily precipitated.”

 surfactant is a contraction of surface active agent
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a thermodynamic solution
of a macromolecule having colloidal
dimensions or a small molecule which

assembles to form structures having

Examples of macromolecules which are quite soluble
in water are DNA, proteins, polysaccharides (starch)

Small molecules which can self-assemble into

small molecules which display
an affinity for the interfaces between two

to adsorb at these
interfaces. A typical surfactant is sodium

The zigzag portion of this molecule contains 12
is an alkane chain. If we

eliminate the sulfate group, we have dodecane, which
is an oil (immiscible in water but miscible in other
oils). But owing to the polarity of the sulfate group

, SDS is quite soluble in water.

sorb at interfaces, but
assemble to form larger

structures in solution, as illustrated below

Adsorption of surfactants, tends to reduce the
interfacial energy (surface tension) which can slow
the rate of aggregation of thermodynamically

Wiktionary defines it as
having an affinity for the dispersion medium and thus not

of surface active agent
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unstable lyophobic colloids. Later in the course, we
will find that addition to surfactants to lyophobic
colloids is essential to formulating many commerical
products. The circular aggregate of SDS molecules is
called a

micelle – an aggregate of surfactant molecules

While SDS tends to form spherical or cylindrical
micelles (depending on conditions), other surfactants
(e.g. phospholipids) form other shapes such as
bilayers:

A spherical bilayer is called a vescicle
structure is formed using phospholipids, it’s called a
liposome. All cell membranes are bilayer sheets of
phospholipids.

Importance of the Surface

The course title concerns “colloids” and
“surfaces.” The word “surface” means about the
same in physical chemistry as it does in ordinary
English:

surface (or interface) – the boundary between
any two immiscible phases

While we tend to think of surfaces or interfaces as
being sharp, at the molecular level they are diffuse
regions having a thickness on the order of 1 nm.

Regardless of whether we are talking about
lyophilic or lyophobic colloids, the most
part of the definition is size of the structure: size
matters alot. There are several reasons which will be

phase #1 phase #2
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While we tend to think of surfaces or interfaces as
being sharp, at the molecular level they are diffuse

r of 1 nm.

Regardless of whether we are talking about
the most important

part of the definition is size of the structure: size
matters alot. There are several reasons which will be

revealed as the semester progresses.
one reason now.

As particle size decreases, the fraction of
molecules of the particle which reside at the surface
increases. To prove this, consider two concentric
spheres whose radii differ by
“thickness” of the interface.
volume of the interfacial shell

 34 4
shell 3 3

V R t R    

with the volume of the interior sphere

34
inner 3

V R 

Taking their ratio

 3 34 4
shell 3 3

34
inner

3

R t RV

V RR

   
   



Taking t = 1 nm, we obtain the following values for
this ratio:

R (m)
shell

inner

V

V

10–3 (1 mm) 3
10–4 3
10–5 3
10–6 (1 m) 0.003

10–7 0.03

10–8 0.33

10–9 (1 nm)

For particles of 1 mm (e.g. sand grains), the fraction
of molecules in the interfacial region is negligible.
For particles of 1 m, the fraction is starting to
become significant. For nanometer particles, there
are actually more molecules in the interfac
than in the interior.

Think of this interfacial region as a third phase
whose thermodynamic properties lie somewhere
between those of the interior phase and the exterior
phase. As particle size decreases, the thermodynamic
properties of the mixture changes, with the interfacial
region playing an increasingly important role.

Surface Tension

The interface contributes to the Gibbs free energy
of a mixture. That contribution is proportional to the
interfacial area; the proportionality constant
the

phase #2
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the particle which reside at the surface

To prove this, consider two concentric
spheres whose radii differ by t = 1 nm, the

Let’s compare the

3 34 4
3 3

V R t R    

with the volume of the interior sphere

3V R 

3 3

1 1
R t R t

V R

     
    

 

= 1 nm, we obtain the following values for

shell

inner

V

V

10–6

10–5

10–4

0.003
0.03
0.33

7

For particles of 1 mm (e.g. sand grains), the fraction
of molecules in the interfacial region is negligible.
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Think of this interfacial region as a third phase
whose thermodynamic properties lie somewhere
between those of the interior phase and the exterior
phase. As particle size decreases, the thermodynamic

ixture changes, with the interfacial
region playing an increasingly important role.

The interface contributes to the Gibbs free energy
of a mixture. That contribution is proportional to the
interfacial area; the proportionality constant is called
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interfacial tension – Gibbs free energy per
unit area of interface between any two
immiscible phases

surface tension – Gibbs free energy per unit
area of surface between a liquid and its
vapor (or air)

In equation form, these definitions correspond to

, , j

mix

T P N

G

A

 
   

 

where  is surface or interfacial tension, Gmix is the

Gibbs free energy of the mixture, A is interfacial area,
T is temperature, P is pressure and Nj is the number

of moles of each component j.

Surface tension as a force

Recall from thermodynamics that systems tend to
spontaneous transform thermselves into that state
having the minimum energy. The simplest
experiment which demonstrate the existence of

surface tension is the following. Consider a soap
film supported by a rectangular wire frame in which
one edge of the frame is moveable:

The soap film satisfies the definition of a colloid
because at least one dimension (the thickness) is in
the range of 1 nm to 1 micron.

 This also demonstrates the importance of surfaces to
colloids.

The soap film has two faces, so the total interfacial
area is

A = 2xl

The tendency to minimize the area gives rise to a
measurable force exerted on the moveable wire:

F = 2l

This force actually has to be continuously applied to
the moveable wire to keep it stationary. Rearranging

2

F

l
  = 72.7 mN/m for water at 20ºC

Recall that the “2” in this equation arises between for
a soap film, there are two air-water interfaces which
contribute to the force, each of length l. Notice also
that the length l is measured along a direction which
is perpendicular to the direction of the force.

Surface tension as an energy

Now consider an experiment in which we stretch
the soap film by pulling on the moveable wire with a
force F causes the wire to move a distance dx:

This has increased the area of air-water interface by

dA = 2l dx

We did work to create this new interface

dW = F dx = 2l dx

Dividing these two equations:

2

2

l dxdW

dA l dx


   = 72.7 mJ/m2 for water at 20ºC

Thus you can see that  can be considered to be the
energy per unit area of the new surface created by
moving the wire to expand the film.

Surface tension causes a number of facinating
phenomena, which are demonstrated in the film by
Lloyd Trefethen (MechE Dept, Tufts U, 1963) shown
in class.

Particle Characterization

Shape

The performance of a colloid as a product is often
determined by physical properties -- size, shape,
density -- as well as chemical composition.

x

top view

side view
(vertical scale of film exaggerated)
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One example is the iron oxide particles
commonly found in audio and video recording tape
as well as floppy disks, hard disks etc. These
particles are composed of -Fe2O3 (maghemite),

which is a particular phase (denoted by the ) of this
ferric oxide which has good magnetic properties.

Size and shape is also important. The best
recording properties are obtained using needle-
shaped (acicular) particles typically 20120 nm in
size.

Generally, small particles are preferred since, ideally,
each particle could store a single bit of information.
Then the smaller the particle, the higher the density
of information storage:

large size  low info density

But there is a limit to how small the particles can be.
For small particles, the magnetic dipole undergoes
significant thermal fluctuations, which means that
any stored information would be lost:

small size  (super)paramagnetic

Thus there is an optimum size.

Another example of a colloidal product is latex
paint which consists of 200 nm spheres typically of
some acrylic polymer. Here the shape isn't so
important. The emulsion polymerization process
happens to produce spheres. Thin films of these
polymers would tend to be clear. TiO2 particles are

sometimes added as a pigment to produce an opaque
white film.

Another common shape is the platelet. Many
clays used for ceramicsnaturally occur as hexagonal
plates typically on the order of 100x1000 nm in size.

Barium ferrite is a magnetic material which also
exists as hexagonal platelets, but much smaller in
size. This material maintains its ferromagnetic
properties at much smaller size and so it is of
considerable interest for magnetic recording. One
difficulty is getting it dispersed.

The magnetic dipole is usually aligned with the
shorter geometric axis with the ferrites whereas the
dipole is aligned with the long axis in ferric oxides.

Strong magnetic attractions cause these particles to
aggregate with the dipoles aligned north-to-south.
This produces long necklace-like structures with the
ferric oxides and poker-chip stacks with the ferrites.
The stack of poker chips is much harder to disperse.

Ellipsoids or Spheroids

A (triaxial) ellipsoid is a generalized version of a
sphere. The mathematical equation of a sphere in
rectangular coordinates (x,y,z) is

2 2 2 2x y z R  

where R is the radius of the sphere. The equation of
an ellipsoid is

22 2

1
x y z

yx z

R R R

    
            
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which has three different radii. The volume of a
ellipsoid is given by

4
3 x y zV R R R 

A formula also exists for the surface area but it
involves special functions
(http://mathworld.wolfram.com/Ellipsoid.html

A sphere has all three radii equal. If only two of
the three radii are equal, the object is called an
spheroid. There are two different types of
prolate and oblate. Both are obtained by rotating an
ellipse around one of the principal axes.

The equation of an ellipse is the 2
that for an ellipsoid:

22

1
x y

yx

R R

  
        

An ellsipse having Rx > Ry is shown below:

Rotating this same ellipse around the x
a cigar-shaped object called a prolate ellipsoid

y

z

top view

side view

y

side view

z

top view
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The volume of a

A formula also exists for the surface area but it
involves special functions

fram.com/Ellipsoid.html).

A sphere has all three radii equal. If only two of
, the object is called an

. There are two different types of spheroids:
Both are obtained by rotating an

ne of the principal axes.

is the 2-D analog of

1 

is shown below:

ellipse around the x-axis results in
prolate ellipsoid.

If instead, we rotate around the y
pill-shaped objected called an oblate ellipsoid

Particle Size Distribution

Most sols are not composed of identical particles.
Nearly always there will be a range of
To describe the distribution of particle sizes, we
might subdivide the total range of sizes into a number
of intervals and then count the number of particles in
each interval.

This process is called classification of the particles:
we are assigning each particle to a class and then
counting the members of each class.
data from Table 1.5 on p32 of Hiemenz:

A plot of the count ni of each class

of that class is called a histogram. The following plot
is the data tabulated above and is Fig. 1.18a:

x

x

x

x
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If instead, we rotate around the y-axis we obtain a
oblate ellipsoid.

Most sols are not composed of identical particles.
Nearly always there will be a range of particle size.
To describe the distribution of particle sizes, we
might subdivide the total range of sizes into a number
of intervals and then count the number of particles in

This process is called classification of the particles:
signing each particle to a class and then

counting the members of each class. Here are the
data from Table 1.5 on p32 of Hiemenz:

of each class i versus the size di

of that class is called a histogram. The following plot
is the data tabulated above and is Fig. 1.18a:
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Such a distribution can be characterized by its mean

d and its standard deviation , which are
as:


i

i i
i i

n i i i
i ii i

i i

f

n d
n

d d d f d
n n

   


 

 

and  
2

i i
i

f d d  

where
i

i
j

j

n
f

n



is the fraction of particles which are in class
above mean is called the number average
There are other reasonable mean values which are
also defined:

 
1 2

2
sd d where n nd f d

is called the surface average diameter, and

 
1 3

3
vd d

is called the volume average diameter.

 
1 6

6
zd d

is call the Z-average. These four measures of the
average diameter are not equal. Generally the larger
the exponent on d, the more heavily larger diameters
are weighted in the average; thus

dn < ds < dv < dz

The reason for so many definitions of average is
different experiments for measuring the average
diameter weigh the various classes different
example, light scattering yields the Z
called the intensity average) whereas centrifugation
rate yields the surface average but centrifugation
equilibrium yields the volume average.

Most histograms of particle size
reasonably well by a Gaussian shape:

 


22

1
exp

22

x x
f x

 
  
   

which is called a normal distribution
particle size distribution is quite broad, sometimes

7
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Such a distribution can be characterized by its mean

, which are calculated

n i i i
i i

d d d f d    

2

is the fraction of particles which are in class i. The
number average diameter.

There are other reasonable mean values which are

n n
i i

i

d f d

diameter, and

diameter. Finally,

measures of the
average diameter are not equal. Generally the larger

, the more heavily larger diameters

The reason for so many definitions of average is that
ring the average

the various classes differently. For
example, light scattering yields the Z-average (also

whereas centrifugation
but centrifugation

.

Most histograms of particle sizes are fit

2

22

x x 
 
 
 

(1)

normal distribution. When the
particle size distribution is quite broad, sometimes

yields better fit is obtained using a
distribution:

 


2

ln ln1
exp

2 2 ln

f x

 
 

  
  

 

Eq. (1) yields the familiar bell shape of a Guassian
when you plot f vs x on linear coordinates wherea
(2) gives the bell shape of a Gaussian when you plot
vs x on semi-log coordinates, with the x
the logarithmic one.

Sometimes it’s more convenient or more accurate
to plot the cumulative distribution
the fraction of particles having a size smaller than

   
x

F x f x dx



  
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yields better fit is obtained using a log-normal



 

2

2

ln ln

2 ln

g

g

x x
 

 
  

 
 

(2)

yields the familiar bell shape of a Guassian
on linear coordinates whereas

gives the bell shape of a Gaussian when you plot f
log coordinates, with the x-axis being

Sometimes it’s more convenient or more accurate
cumulative distribution; in other words,

the fraction of particles having a size smaller than x:

F x f x dx 
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Lecture #2 begins here

Trefethen’s film.

Brownian Motion

Reading: Hiemenz Sect. 2.6

One of the ways colloidal dispersions differ from
other mixtures is that the particles exhibit Brownian
motion.

Brownian motion - random movement of a
particle as a consequence of thermal
agitation

Suppose we were able to track, for example, a
single gas molecule as it undergoes collisions with
other gas molecules. The trajectory might look
something like that shown below (except in 3-D).
The trajectory of a Brownian particle in a liquid
would look similarly random except that the mean-
free path (length of straight paths between collisions)
is much shorter.

1-D Random Walk

To simplify the mathematics, let's confine our
attention to 1-D motion -- for example, motion along
a capillary tube.

Assumptions:

 particle can only move left or right in steps of
equal length

 left or right steps are equally probable, but
particle cannot remain at its present location
(every t seconds, it must move left or right)

Let P(m,N) denote the probability that a particle is
located at position m (an integer) after taking N steps
(also an integer). Starting at 0, after N steps, the
particle must be located at some point between –N
and +N:

–N  m  +N

Also the sum of the probabilities must always equal
unity (i.e. the particle must exist somewhere):

 , 1
m

P m N






Now let's try to determine P(m,N) subject to the
assumptions stated above.

N = 0: this is just the initial condition. We will start
the particle at the origin, so: -

 
1 if 0

, 0
0 if 0

m
P m

m


 



N = 1: possible locations are m=+1 or -1, which are
equally probable, so:

 
1
2

if 1
,1

0 if 1 (including 0)

m
P m

m

 
 



N = 2: there are four possible sequences for these 2
events

1st
step

2nd
step m P(m,2)

L L -2 1/4
L R 0 1/4
R L 0 1/4
R R +2 1/4

Each of these outcomes has equal probability, leaving

 

1
2

1
4

if 0

, 2 if 2

0 otherwise

m

P m m

 


  



10 5 0 5 10
0

0.5

1

m

p
ro

b
ab

il
it

y N 0

10 5 0 5 10
0

0.5

1

p
ro

b
ab

il
it

y N 1



06-607 9 Spring, 2010

Copyright© 2010 by Dennis C. Prieve PDF generated April 28, 2010

Arbitrary N: suppose I toss a coin N times. The
probability of a H heads and T tails can be
determined from elementary statistics as:

 1
2

!probability of
heads, tails with

! !in any order

N
N

H T N H T
H T

  
   

  

(3)

Suppose I move one step to the right if the coin toss
yields a head and one step to the left if the toss yields
a tail. To get m>0 we clearly need to take more heads
than tails. Indeed, the final position depends only on
the number of heads relative to the number of tails:

m = H - T

but N = H + T

Solving simultaneously for H and T:

2

2

N m
H

N m
T

 
 


 



(4)

Substituting (4) into (3):

 

 1
2

!
if even

, ! !
2 2

0 if odd

N
N

N m
N m N mP m N

N m




       
      


 

The zero result for N+m = odd can be inferred from
(4). Since the number of heads H and the number of
tails T are integers, then (4) implies that 2H = N+m
and 2T = N–m must both be even numbers. In
particular N+m cannot be an odd integer, so we
assign zero probability to this outcome.

Lecture #3 begins here

N∞: When N becomes very large we can use
Sterling's approximation:

         11 1
2 2

ln ! ln ln 2n n n n O n     

and a second approximation (valid when m N ),

which is a Taylor series expansion of the logarithm
function around unit value for its argument:

2 3
1

ln 1
2

m m m m
O

N N N N

      
          
       

With these two approximations, our expression for
probability becomes a little easier to calculate:

 

1 222
exp if even

, 2

0 if odd

m
N m

P m N N N

N m

              


 
(5)

Probability Density

Our goal is to derive Einstein's famous equation:
in random walk the mean-square displacement grows
in direct proportion to the time of the walk:

2 2x Dt (6)

Now let's try to relate (5) to Brownian motion in
gases and liquids. What is the length of a step? How
big is N?

To answer these questions, it is convenient to
keep in mind the kinetic theory of gases. The
distance a gas molecule travels between collisions is
the mean free path:

7

10

10 m for gases near STP
mean-free path

10 m for liquids






 


Thus the step sizes can be of atomic dimensions,
which would be virtually impossible to follow. The
rate of stepping can be equated with the collision
frequency:

10 1

13 1

10 sec for gases near STP
collision freq

10 sec for liquids






 


In the experiments I have in mind, we would be
tracking a single colloidal particle through a light
microscope using video microscopy, which might be
capable of 30 frames/sec. Thus there is no hope of
seeing individual steps; we can only sample at
intervals of many steps.

Then the discontinuity between odd and even
values of N+m will never be resolved. So let’s
smooth out (5) by replacing it with

10 5 0 5 10
0

0.5

1

p
ro

b
ab

il
it

y N 2
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 
1 221 2

, exp
2 2

m
P m N

N N

  
        

(7)

where the factor of ½ in front arises from averaging
odd and even values. Let l denote width of
elementary step; then

x = ml (8)

is the final position of the particle after N steps. Also
let  denote the time interval for elementary steps;
then

t = N (9)

is the time required for N steps. Finally let x denote
the spatial resolution of position measurements.
Based on the arguments above, we expect x ≫ l.
The probability of finding the particle between x and
x+x is the sum of

   

1 22

probability of finding it ,
between and

1 2
exp

2 2

x x
m

l

x
m

l

P m N
x x x

x m

l N N







 

   
        



(10)

where the second equation substitutes (7) is
approximate because it treats the exponential as a
constant over this narrow (differential) interval of m.
Dividing this sum of probabilities by the spatial
interval x yields the probability density p(x,t). After
substituting (8) and (9), we have

 
1 22

2 2
, exp

2 2

P x
p x t

x l t l t

   
          


(11)

The net effect of the approximations is to take us
from a discrete description of the random walk
process to a continuous description (i.e. m was
constrained to take on integer values whereas x is not
integer). Unlike P(m,N) (which is discontinuous),
p(x,t) is a smooth continuous function. In effect, we
have averaged out the singularities in P by accepting

a coarser description of the random walk process.

Some properties of p(x,t): it has units of m–1, it
has Gaussian shape (see below) and

 Actually the singularities in (5) are an artifact of
assuming uniform step size. In reality, each elementary
step has a different length; then these discontinuities
disappear.

1p dx






We can use (11) to re-write (10):

   probability of finding it ,
between and

p x t dx
x x x


 

In effect, we have replaced x by a differential
quantity dx, which just acknowledges that x is
sufficiently small that the exponential function of x is
essentially constant over the interval between x and
x+dx.

To calculate the average value of x(t) for a large
number of random walks, we take the probability of
finding a particular x, multiply by x, and add up the
result for each x:

 , 0x x p x t dx




 

Substituting p(x,t) from (11) and integrating, the
result is zero mean x, independent of time t. This
integral must vanish because p(x,t) is an even
function while xp is odd:

Similarly we can calculate the mean square
displacement which does not vanish:

 
2

2 2 ,
l

x x p x t dx t




 
 (12)

Notice that the the mean-square displacement is
proportional to t and the portionality coefficient has
units of m2 sec–1 – just as in (6).

1-D Diffusion from a Point Source

Reading: Hiemenz Sect. 2.5
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Now we will try to show that the coefficient of t
in the above expression is just the usual diffusion
coefficient (times two). First let me carefully define
what I mean by diffusion coefficient (D). According
to Fick's 1st law of diffusion:

 
 ,

,x
C x t

N x t D
x


 


(13)

where Nx is the flux (rate of transport per unit area) of

particles in the x-direction. What is the difference
between Brownian motion and diffusion?

Brownian motion - random walk of a single
particle

diffusion - net flux of an ensemble of particles
(particle transport rate/area)

The “ensemble” is a set of particles (or small
molecules) which is statistically large enough so that
the average behavior is reproduced if the diffusion
experiment is repeated.

Conservation of particles (a mass balance) for
diffusion in the x-direction only requires

0xNC

t x


 

 

Substituting (13) into the above equation yields
Fick's 2nd law of diffusion:

2

2

C C
D

t x

 


 

We are going to look at the particular solution of this
equation which satisfies the following initial

condition

t = 0:    , 0
n

C x x
A

 

and boundary conditions:

x  ∞:  , 0C t 

This mathematical problem describes the following
experiment. n particles (the ensemble) are initially
distributed uniformly over the x=0 plane inside a tube

 (x) is called the “delta function” and it’s defined such
that for any continuous function F(x), the following
relationship holds:

     0 0F x x x dx F x




  

of cross sectional area A. At time zero they are
released and diffuse away in the +x and –x directions.

The particular solution to this mathematical problem
is

 
2

, exp
44

n A x
C x t

DtDt

 
  

   

Comparing this result to (11), we see that the two
results have the same dependence on x and t. Indeed
the two equations are identical if we make the
following substitutions:

2

2

l
D 


(14)

and  
 ,

,
C x t

p x t
n A



Moreover, substituting (14) into (12) yields (6):

2 2x Dt (6)

for Brownian motion in 1-D. The same result applies
to the other two dimensions:

2 2 2 2x y z Dt  

The corollaries for 2-D and 3-D are

2 2 2 4r x y Dt  

2 2 2 2 6r x y z Dt   

whose proof will be left for a homework.

x
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Lecture #4 begins here

Sedimentation

Reading: Hiemenz §§2.2-2.3

We have just seen how tracking the Brownian
motion of single colloidal particles with the aid of a
microscope can allow us to measure the diffusion
coefficient D. Einstein went on to use D to calculate
Avogadro’s number NA from

gas
A

R T
N

Df
 (15)

where Rgas = 8.31 J mol-1 ºK-1 is the universal gas

constant, T is absolute temperature and f is the
friction coefficient of the same particle having
diffusion coefficient D. So what’s this friction
coefficient? and what’s the basis for the equation
above? Why does the gas constant appear when we
are not dealing with a gas?

The Friction Coefficient

Suppose we apply a force Fapp to a colloidal

particle initially at rest. The force causes the particle
to accelerate in the direction of the applied force.
Once it begins to move through the fluid, the particle
also experiences a drag force, which can be predicted
from Stokes formula:

6drag

f

R  F v (16)

for spheres of radius R in a fluid having viscosity .
Notice that this force acts in the direction opposing
the velocity v. A similar relationship applies for
nonspherical particles, where the proportionality
constant multiplying –v is call the friction coefficient
f. The drag force offsets some of the applied force so
that the sphere then accelerates more slowly until it
reaches its final or terminal velocity v∞ at which the

drag force is equal to the applied force but acts in the
opposite direction:

6drag app

f

R    F v F

Solving for the terminal velocity:

1
app

f
 v F (17)

where the new proportionality constant (1/f ) is called
the hydrodynamic mobility.

While the nature (gravity, electrical etc.) of Fapp

is not important, the most common force is gravity.
For a sphere of density s immersed in a fluid of

density f, the gravitation force acting on the sphere

is the difference between its weight and the weight of
the fluid displaced by it (Archimedes law):

 34
3app grav s fR    F F g (18)

where g is the acceleration of gravity, a vector
pointing to the center of the earth and having
magnitude of 9.81 m/sec2.

Sedimentation Equilibrium: Analysis #1

Reading: Hiemenz §2.8

Eq. (15) results from comparing
two independent approaches to
describing sedimentation equilibrium.
The first approach is via mass
transfer. Suppose we disperse N
identical colloidal particles in a test
tube of cross-sectional area A and
allow them to sediment for a long
time. As soon as their concentration begins to build
up near the bottom of the test tube, diffusion will
occur which opposes further sedimentation.
Eventually an equilibrium concentration profile is
establishes such that the downward sedimentation
rate is exactly balanced by upward diffusion at every
point in the test tube:

diffusion

sedimentation

0

x

grav

v

F dC
C D

f dx
  





(19)

The shape of concentration profile can be obtained by
integrating this equation

  exp
gravF

C x A x
Df

 
  

 
(20)

where A is some integration constant chosen so that
the total number of particles equals what was added
initially

 
top

bot

x

x

N
C x dx

A


Although easily calculated, the exact value of A is not
important to the current problem.

x
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Lecture #5 begins here

Sedimentation Equilibrium: Analysis #2

The second approach to predicting sedimentation
equilibrium is via thermodynamics. Recall that a
given chemical component i of a mixture distributes
itself between phases such that at equilibrium:

i in phase #1 = i in phase #2

where i is called the chemical potential of

component i. Within a given phase, each component
will distribute itself such that its chemical potential is
the same at each point, or

i  0 or i = const

For an ideal solution, the chemical potential is
calculated using

  ,
lni gas iT P

d R T d C  (21)

For components which experience an interaction
force from a source outside the system, we need to
modify the criteria for phase equilibrium:

i + i in phase #1 = i + i in phase #2

where i is the potential energy of component i

arising from that force. Within a given phase, each
component will now distribute itself such that the
sum of its chemical potential and the potential energy
is the same at each point, or

 i i    0 or i + i = const

For colloidal particles in our test tube, which
experience a gravitational force given by (18), their
potential energy can be calculated from

 i A gravx N F x 

where we have multiplied by Avogadro’s number to
get the same units of energy per mole of particles as
in (21). At equilibrium, thermodynamics requires

ln
0i i

gas A grav
d d d C

R T N F
dx dx dx

 
   

Integrating:

  exp
A grav

gas

N F
C x A x

R T

 
  

 
 

(22)

Now the exponents in (20) and (22) must be the
same, so:

gravF A gravN F

Df


gasR T

Solving this for NA yields (15):

gas
A

R T
N

Df
 (15)

Sedimentation Length

Dividing Avogadro’s number into the gas
constant yields

23 J
1.3805 10

K

gas

A

R
k

N
  


(23)

which is called Boltzmann’s constant. kT =
4.1110–21 J (at 25ºC) is the characteristic thermal
energy of single molecules or single colloidal
particles. (22) can then be re-written as

  exp
gravF x

C x A
kT

 
  

 

Let’s define the sedimentation length l such that

gravF l kT

Thus l represents the vertical distance over which the
particle concentration changes by a factor of e = 2.71.
It also gives an idea of how thick the sediment layer
becomes if the particle concentration remains dilute:
say N/A  0. Because the weight of a particle scales
with the cube of its radius, this sedimentation length
is quite sensitive to particle size. Consider particles
of a hypothetical material having a specific gravity of
2. The sedimentation length for particles of different
size are shown in the following table.

2R l

1 mm
(sand)

10–6 nm
(sub-atomic)

0.1 m
(colloid)

1 mm

1 nm
(molecule)

1 km

The calculated lengths l vary from sub-atomic to a
kilometer.

Determining Particle Size from Sedimentation
Equilibrium

For some colloidal particles, it is possible to
establish sedimentation equilibrium with a dilute
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solution and then to measure the concentration profile
C(x). Plotting the concentration on semi-log
coordinates should yield a straight line:

The slope of this line should be negative and its
magnitude equals the ratio of the gravitational force
to kT:

1
slope

gravF

kT l
   

Since kT is known, Fgrav can be determined which

can then be converted into a particle size R using (18)

 34
3grav s fF R g    (18)

Extension to Nonspherical Particles

For nonspherical particles, the formulas for
volume and friction coefficient used above are not
valid. Instead, we can write (18) as

  
1

f
grav s f s

sm

F V g V g
 

        
(24)

where m is the mass of one particle. Stokes law can
be written as (17):

1
gravv F

f
  (17)

Combining these two equations yields

1
f

s

m
v g

f


 
    

(25)

Thus by measuring the terminal sedimentation
velocity, we can infer the ratio m/f.

Centrifugal Sedimentation

Reading: Hiemenz §2.4.

For small particles, the gravitational
sedimentation length might be too large to be

measured. In this case, we might measure the
concentration profile caused by centrifugal forces
rather than gravity.

A centrifuge is a device in which a sample is
rotated in a plane around some axis. If the distance
of the sample from the axis of rotation is r and the
rotation rate is  (radians per time), then the
centrifugal acceleration is

2
centrifugeg r 

Subsituting this quantity for g in (18) yields the
centrifugal force on particles:

 3 24
3centrifugal s fF R r     (26)

Today’s ultracentrifuges (the size of a washing
machine) are capable of accelerations up to 106 g
which greatly extends downward the range of particle
sizes which can be measured.

Experiments either measure C(r) for sedimenta-
tion equilibrium or the terminal velocity generated by
the centrifugal force. Case 1) If the sample size r is
very small compared to r, centrifugal sedimentation
equilibrium is analyzed by plotting C(r) on semi-log
coordinates and the slope of the straight line is
converted to size using the analog of (18) or (24)
with the g replaced by r2.

Case 2) If the sample size r is not negligibly
small compared to r, then a plot of ln C(r) vs r will
be curved downward. The analysis leading to the
mass of the particles will now be more complicated
and is left for a homework assignment.

Sedimentation rate of small molecules in an
ultracentrifuge is often analyzed by imaging the
concentration profile though a Schlieren lens, which
reveals gradients in the refractive index of the
solution. When the concentration of solute varies
with position, so does the index of refraction, thus
creating a gradient in refractive index.



r
+

x

–Fgrav

kT
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In fig. (a) below, we see the evolution of the
concentration profile with time (the four curves). As
sedimentation occurs far from equilibrium, the
solution at the top of the sample (small
free of solute; the abrupt increase in concentration
marks a “front” between a solute-free solution
the solution bearing solute moves downward (toward
larger r) at the rate of sedimentation of the molecules.

The Schlieren lens images the concentration
gradient dc/dr sketched in (b). An actual Schlieren
image from an ultracentrifuge is shown below [taken
from Faucher & Koleske, Science 147, 1152 (1965)].

By tracking the speed of the peak, we can infer the
sedimentation velocity dr/dt. The resulting speed is
usually reported as the sedimentational coefficient
defined by


2 2 2

2 1

ln1 ln 1dr dt d r
s

dt t tr
  

  

The units of s are sec. In particular

10–13 sec = 1 svedberg = 1 S

which is named after T. Svedberg who won
Nobel in chemistry the same year as Perrin won the
physics prize (1926). Replacing v∞ in

and g by r2, we obtain

15

PDF generated

e the evolution of the
concentration profile with time (the four curves). As
sedimentation occurs far from equilibrium, the
solution at the top of the sample (small r) becomes
free of solute; the abrupt increase in concentration

free solution and
moves downward (toward

) at the rate of sedimentation of the molecules.

The Schlieren lens images the concentration
An actual Schlieren

fuge is shown below [taken
, 1152 (1965)].

By tracking the speed of the peak, we can infer the
The resulting speed is

usually reported as the sedimentational coefficient

 2 1

2 1

ln r r

dt t t
(27)

sec = 1 svedberg = 1 S

which is named after T. Svedberg who won the
Nobel in chemistry the same year as Perrin won the

in (25) by dr/dt

1
f

s

dr m

dt f

 
     

or
2

1
dr dt m

s
fr

 
    

  

Notice that, even if r varies significantly across the
cell, the value of s should be independent of
can be calculated from the displacement of the
Schieren peaks using (27) and translated into
using the equation above.

Example: Prob. 2 from Hiemenz, Chapt. 2

Solution: The problem statement provides
sedimentation equilibrium at 25ºC in a centrifuge
rotating at 12,590 rpm. Centrifugal sedimentation
differs from gravitation sedimentation in that the
force depends on position.

Replacing vx = Fgrav/f in (19) by

dC/dx by dC/dr:

21 0
f

s

m dC
r C D

f dr

 
      

which is a first-order separable
yields

1
f

s

dC m

C Df

 
     

Integration yields

  1
2

ln 1 const
f

s

m
C r r

Df

 
      

Using (15) and (23):

Df = kT

and the concentration profile becomes

 
2

slope

ln 1 const
2

f

s

m
C r r

kT

 
     

So a plot of lnC vs r2 should be linear. Th
given yields

Spring, 2010

PDF generated April 28, 2010

2f

s

r
 

     
(28)

1
f

s

 
     

(29)

varies significantly across the
should be independent of r and

can be calculated from the displacement of the
and translated into m/f

: Prob. 2 from Hiemenz, Chapt. 2

: The problem statement provides C vs r for
sedimentation equilibrium at 25ºC in a centrifuge

Centrifugal sedimentation
differs from gravitation sedimentation in that the

by dr/dt in (28) and

1 0
m dC

r C D
f dr

   

order separable ODE. Separating

2f

s

r dr
 

     

2 2ln 1 const
f

s

C r r
 

      

and the concentration profile becomes

2ln 1 const
f

s

C r r
 

     

should be linear. The data
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The line is a best-fit linear regression having the
following slope:

2
2slope 1 0.349 cm

2

f

s

m

kT


 
     

(30)

Some of these quantities can be calculated from the
info given in the problem statement:

3 112,590 rev radians
2 1.318 10 sec

min rev
   

 23 21J
1.3807 10 298 4.11 10 JkT K

K
  

     
 

We are told the protein has a density of 1.370
gm/cm3. So

1
1 1 0.270

1.370

f

s


   


Solving (30) for the apparent mass m of one
molecule:

206.11 10 gmm  

Avogadro’s number of these molecules equals the
apparent molecular weight of the protein:

23 4 gm
6.02 10 3.68 10

mol
M m   

Knowing the mass and density of one sphere allows
us to calculate its apparent radius:

1 3

0
3

2.20 nm
4 s

m
R

 
   

and apparent friction coefficient:

8
0 0

gm
6 3.69 10

sec
f R    

where we have substituted a viscosity of  = 8.910-4

Pa-sec (0.89 cp) at 25ºC.

Question 2a) asks whether the sample appears to
be monodisperse (i.e. one size). The first three points
of the graph above appear to have a different slope
from the remaining points and in Hiemenz’s solution
he expects you to follow up on this. Below are
shown separate regressions for the two sets of points:

While you might be able to make a case for two
sizes, that case is not compelling. The fact that the
first “blue” point lies below the red line detracts
significantly from the case. If the sample were
polydisperse, you would expect the slope to increase
monotonically with r. Instead, the slope (of a line
drawn) between the 3rd and 4th point actually
decreases. Moreover the single regression on the
earlier graph is a reasonable fit even for the first three
points. Thus I think Hiemenz is trying to read more
into this data than can be justified. My experience
suggests that a simpler interpretation (i.e. one size) is
often more reliable and defensible than the more
complex interpretation (i.e. two sizes).

Lecture #6 begins here

Question 2b) states that the sedimentation
coefficient s of this sample is known to be 2.7 S and
asks for the (true) value of the friction coefficient f.
Once the mass m is known from sedimentation
equilibrium, the friction coefficient can be deduced
by measuring the sedimentation speed. s is defined
by (29); solving for f and substituting s = 2.7 S =
2.710–13 sec:

8 gm
1 6.12 10

sec

f

s

m
f

s


 
      

r
2

(cm
2
)

43 44 45 46 47

ln(C)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

r
2

(cm
2
)

43 44 45 46 47

ln(C)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
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and
0

1.66
f

f


So why is f not equal to f 0? There are two common

reasons.

Nonspherical Shape

One reason for the difference is that f 0 was

calculated from the mass assuming the particle is a
sphere. No such assumption was made in calculating
f from the sedimentation coefficient. Nonspherical
shape usually increases the friction coefficient for the
same volume (or mass) of particle.

Solvation

A second reason is that water molecules can
attach themselves to particles or large molecules.
This is called hydration (in the case of water) or
solvation (in the more general case).

Adding a rigid layer of water on the outside of the
sphere would also increase the friction coefficient (by
increasing the hydrodynamic radius of the sphere)
without changing the net weight of the sphere:

 334 4
3 3

solid

grav sF R R R      


 

3

fluid layer

34
3

fR

R R

 
   

   



 
displaced fluid

34
3

f

s fR



   



net weight is the true weight less weight of displaced
water. Attaching a layer of water increases both the
true weight and the weight of the displaced water by
the same amount, leading to no change in the net
weight.

Fig. 2.9 in Hiemenz (above) shows different
combinations of these two explanations which can
yield a given value for f /f0. For example, our ratio of

1.66 can be obtained if the particles are ellipsoids
having an axis ratio of 12:1 (prolate) or 0.07:1
(oblate); or spheres could yield this f /f0 if 2.7 grams

of water is bound to every gram of anhydrous solid.R R
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Light Scattering

Now we are going to examine the scattering of
light by small particles. Static light scattering is
widely used to size colloidal particles. Dynamic light
scattering is used both for size determination and
charge determination.

Nature of Light

Light consists of electric and magnetic fields
which oscillate with time at a frequency on the order
of 1015 sec–1; these fields also oscillate with position.
Visible light has a period in the oscillation with

position on the order of 0.5 m which is in the
middle of the colloidal size range. These electric and
magnetic fields are governed by Maxwell’s
equations:

Coulomb’s law: e D. =

Ampere’s law:
t


  



D
H j

Faraday’s law:
t


  



B
E

0 B.

Maxwell’s equations are for light what conservation
of momentum, energy and mass are for transport
phenomena: they govern all behavior of these
quantities. The symbols appearing in these equations
have the following names and units:

Symbol Name Units

e space charge density coul m-3

j electric current density coul s-1 m-2

E electric field intensity volt m-1

H magnetic field intensity amp turn m-1

D electric displacement coul m-2

B magnetic induction weber m-2 =

volt s m-2

Regarding the propagation of light in vacuum, air
or other simple dielectrics, we can take the charge e

and current j to be zero. We need to supplement
Maxwell's equations with constitutive equations: a
statement of how matter responds to oscillating
electric and magnetic fields.

Some examples of constitutive equations in
mechanics include Hooke’s law (for how an elastic
solid responds to stress) or Newton’s law of viscosity
(for how a viscous fluid responds to stress). The

electromagnetic constitutive equations for an
isotropic material are:

D = E, () = electric permittivity
B = H, () = magnetic permeability

Just as Newton's law of viscosity is a linear relation
between stress and rate of deformation, these
constitutive relations also describe a linear response.
 and  represent physical properties of the material,
which happen to depend on the frequency of the
oscillations.

For propagation of light through a dielectric,
Maxwell’s equation can be combined to obtain



2

2
2

2
1

c

t


  



E
E (31)

which is the familiar wave equation. From our
previous experience with wave equations, we know
that the coefficient  is related to the speed of
propagation; in particular, the coefficient of the time-

derivative is 1/c2, so

1
c 


= speed of wave propagation (32)

One particular solution of the wave equation is a
linearly polarized plane wave

   0, expt i t   
  

E r E k r. (33)

where 1i   and k is a vector pointing in the
direction of propagation of the wave with magnitude

2
k

c

 
 



where  is the wavelength. It is customary to use the
complex exponential to describe the oscillating time
and position dependence rather than sines and cosines
because differentiating with respect to time or
position is easier. For example, taking the curl of
(33) we get

i  E k E

and taking the partial time derivative, we get

i
t


 



E
E

Thus both differentiation opererations a replaced by a
simpler multiplication. The appearance of i in
expression (33) makes it mathematically complex.
To convert between the complex exponential and
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sines and cosines, recall Euler’s formula for complex
numbers

cos sinize z i z 

Introduction of physically extraneous imaginary
values is a mathematical convenience. The general
idea is to replace cosz by eiz (which introduces an
extraneous isinz), then perform operations like
differentiation and drop the extraneous imaginary
part in the final answer.

A linearly polarized plane wave is the kind of
light produced by a simple HeNe laser such as a laser
pointer. If desired, we could also calculate the
magnetic field H for a linearly polarized plane wave,
which is given by

 
   0

, 1
, exp

t
t i t

      
   

k E r
H r k E k r.

It turns out that E,  and k are
mutually orthogonal vectors.

wave fronts

rcos

k
r



(33) is called a plane wave because, at a particular t,
the surfaces of constant E are planes; in particular,
surfaces having E = E0 are wave fronts. For plane

waves, these fronts are planar and the planes are
orthogonal to the wave vector k and are spaced a
wavelength apart. To see this, note that

coskr k r.

Consider a plane which is orthogonal to k. All points
r on this plane have the same value for rcos (and
that value is the length of the red line in the figure
above): as  increases, r increases but cos decreases
in such a way that their product remains constant.

Since k.r = const on this plane, so is E.

The intensity of light is also the flux of energy
carried by the wave:

   2 2
0

1
, cost E t     


r E H k k r.

Averaging over either one cycle of time or over one
wavelength yields

 

2

2
02 2

0

1 1 J
[ ]

2 m sec
t dt E







    
  k (34)

Atomic Polarization

Reading: Hiemenz §5.2

Perhaps the simplest problem to consider is the
scattering by a single hydrogen atom in a vacuum.

no applied
electric
field

- +
x

E

We can think of a hydrogen atom as a proton
surrounded by a spherical cloud of negative charge of
equal magnitude. In the absence of any applied
electric field, the center of negative charge coincides
with the center of positive charge.

When a static electric field is applied, the positive
nucleus is pulled in direction of the electric field,
while the oppositely charged cloud is pulled in the
opposite direction. A displacement between the
centers of positive and negative charge occurs. The
result is that a dipole moment has been induced in the
atom. If x is the vectorial displacement between the
centers of positive and negative charge, and e is the
quantity of charge (in this case, its the elemental
charge on one proton), then the induced dipole is

p  ex

Lecture #7 begins here

The magnitude of this dipole is zero when E is zero
and increases linearly as E increases. The direction
of p is parallel to the direction of E:

p = E (35)

E

H

k
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where  is a material property called the molecular
polarizability. Thus, even molecules which do not
possess a permanent dipole moment acquire a dipole
moment throught the shift in their electron cloud by
the applied electric field. The oscillation of this
dipole with time (since E oscillates with time) is what
leads to “scattering” much like the signal from a
radio transmitter which uses a dipole antenna.

In the case of a single spherical electron cloud,
the polarizability is given by

3
04 R   (36)

where R is the radius of the cloud and

2
12

0 2

Coul
8.854 10

N-m

  

is the permittivity of vacuum, which is the
proportionality constant in Coulomb’s law:

1 2
2

0

1

4

q q
F

R




For charges in media other than vacuum, 0 in

Coulimb’s law is replaced by the permittivity for that
media .  is also related to the speed of light: see
(32). The ratio of the speed of light in vacuum c0 to

the speed of light in some other medium c is defined
as the refractive index of the material

0c
n

c


 

0



 00





(37)

Most transparent media have the same value of
magnetic permeability  so this property cancels out.

Now  is a property of a continuum whereas  in
(36) is a property of single molecules or atoms. The
two properties are related by the Clausius-Mosotti
equation (also called the Lorentz-Lorenz formula):

2
0 0 0

2
0

3 3 1

2 2

n

N N n

     
  

   
(38)

where N is the number of molecules per unit volume;
the second relation results from substitutuing (37).
For dilute gases, n is only slightly larger than unity
(e.g. air at STP has n = 1.0003). Then we can
approximate

gases:  
2

0 0

2

3 21
1

2

n
n

N Nn

 
   


(39)

Radiation from an Oscillating Point Dipole

Reference: Lipson & Lipson, p80-85, 313-317

Reading: Hiemenz §5.3

We have just seen that electric fields can induce a
dipole moment in all material — even if the atoms or
molecules do not possess a permanent dipole of their
own. Next, we will see that oscillation in this dipole
generates electromagnetic radiation in all directions
from this oscilling dipole.

Let the induced point dipole oscillate with a
frequency  at the origin of spherical coordinates

at r = 0: 0
i te p p

The particular solution to the wave equation (31)
which describes the far-field (kr ≫ 1) solution to the
radiation from the oscillating dipole is

   
 2

rad
0

0

,
4

i t kr
k e

t
r



 

   


e

E r n p n e


(40)

where r is the magnitude of the position vector r and
n is a unit vector in the direction of r

r


r
n

x

y

z

r




E

H

 or n

p

(40) is called a spherical wave. The local energy flux
associated with this spherical wave is given by

   

 24 2 2
0

2 2
0

Re Re

sinsin

16

t krk p c

r

  

 


 

E H

n
(41)

The total power emanating from this point can be
calculated by integrating the flux over any closed
surface containing the oscillating dipole, and then
averaging the result over one period of the
oscillations:


2

4 2 3 2
0 0 4

4
0 0

4

12 3k

k p c p c
P









   

  
(42)
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Note the sensitivity to the wavelength of the incident
light, whose frequency and speed of propagation are
the same as the scattered light. Visible light varies in
wavelength from about

violet or blue:  = 400 nm

red:  = 700 nm

4
700

0.11
400

red

blue

P

P


 

  
 

Clearly red light has a longer wavelength and scatters
much less light then does blue:

earth

noon
sun

setting
sun

white

blue

red

white

blue

This is why the daytime sky appears blue and
sunsets (and sunrises) appear red. During daytime,
we don’t look directly at the sun, but at white light
which is scattered off of molecules of air and water in
the atmosphere. Since the blue portion of the
spectrum is scattered more intensely, the sky appears
blue. On the other hand, at sunset we are looking
almost directly at the sun. So we see the light which
has not been scattered away. Thus the setting sun
appears red.

The amplitude of the oscillating dipole is
proportional to the strength of the electric field of the
incident light according to (35) and the
proportionality constant is given by (36). This links
the scattered intensity given by (41) (averaged over
one cycle) to the incident intensity given by (34).
Their ratio is dimensionless

2 2
2

2 4 2
0 0

sin
2

sca
r

inc
x

i

I r

  
  

 
(43)

Scattering from Small Particles: Rayleigh Scattering

p1 p2

r

incident wave

(41) represents the energy flux radiating from a
single H atom or other fluctuating dipole. Suppose
instead of one, we have two H atoms close enough
together that they see the same incident electic field

so that the two induced dipole oscillate in unison.
Generally, this requires that the distance separating
them is very small compared to the wavelength of the
incident light.

 r <<  (44)

Then the net dipole induced is just twice what it
would have been if only one H atom had been
present. Similarly, if you had a cluster of m atoms
very close together, they would generate a dipole
moment m times as large as one.

Suppose we have particles of one phase dispersed
in a second phase. The analog of (36) can be
deduced by calculating the apparent dipole moment
induced in a spherical particle of radius R and
permittivity s by a uniform electric field externally

applied in the surrounding phase (e.g. water) having
permittivity f. Assuming both phases are dielectrics

the result turns out to be

3

3

4
2

f

s f
particle f

s f
V

R



  
  

  
(45)

The important result is that the polarizability of small
particles is proportional to their volume. While this
was also true of (36), the proportionality constant is
different. This difference arises because the electron
cloud of an H atom was treated as a good conductor
whereas the particles (and the surrounding fluid) are
treated as insulators. In particular, different electrical
properties show up in the derivations (left for a Hwk
problem). Finally the analog of requirement (44) is

 R << 

Scattering from Dilute Gases

Now (43) gives the scattering from a single atom
or molecule. For a dilute gas, the gas molecules will
be far enough apart to be considered as independent
scatterers; then the scattering from a sample volume
is obtained from (43) by multiplying by the number
of scatterers inside the sample volume. Multiplying
(43) by N molecules per unit volume and substituting
 from (39) we obtain

gases:
 22

2

4 2
0 0

2 1
sinsi i n

N
I I r N

 
  



gives the dimensionless scattering intensity per unit
sample volume.

Scattering from Liquid Solutions

For condensed phases like liquids, the molecules
are too close together to behave like independent
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scatters. Instead, for every molecule whose dipole
oscillates with a particular phase there is another
molecule which oscillates 180º out of phase causing
destructive interference in the total scattering. A
perfectly uniform pure liquid then scatters no light.
Nonetheless experiments do reveal some scattering
from pure liquids. Scattering is caused by
inhomogeneities in the local density of the liquid
caused by thermal agitation.

Solutions having a solute dissolved in the liquid
also scatter some light. Some of this scattering
comes from density fluctuations in the pure liquid
and some comes from fluctuations in the
concentration of solute. The theory is quite involved
and goes beyond the scope of this course. We will
just give the final result:

 

 

22
2

4 2
0

2
sins

osm

n dn dC kTCi

I r C

   
 

  

where osm and n is the osmotic pressure and

refractive index of the solution having mass
concentration C of solute. At infinite dilution, all
solutions behave ideally and the osmotic pressure is
given by van’t Hoff’s law (see Hiemenz §3.2):

osm
RT

C
M

 

where M is the molecular weight of the solute.
At higher concentrations, the osmotic pressure
becomes a Taylor series expansion in the
concentration, which is called a virial expansion. At
low concentrations, we can truncate after the second
term, leaving

2
osm

C
RT BC

M

 
   

 

where B is called the 2nd virial coefficient which
contains information of the intermolecular interaction
between solute molecues. Using this second
expression for the osmotic pressure, the scattering
becomes

2

2
0

sin

1 2
si KC

I M BC r





(46)

where
 

22

4

2

A

n dn dC
K

N

   




In the limit of zero concentration of solute C, the
scattering goes to zero as expected.

Lecture #8 begins here

Static Light Scattering Experiments: Turbidity

One type of experiment is to measure the
intensity of light transmitted through the sample It

relative to the intensity of incident light I0.

Generally, the amount of light transmitted will be less
than that incident for two reasons: 1) some of the
light might be absorbed by molecules in the sample
or 2) light might be scattered by the sample. We will
assume that no light is absorbed. Then

It = I0 – Is

where Is is the amount scattered. Owing to scattering

the intensity of light monotonically decays with
distance x travelled through the sample. Consider the
change in intensity across a slice of sample dx which
is thin enough so that the intensity changes by a
negligibly small amount

The change in intensity dI is expected to be negative
and amount of the decrease is expected to be
proportional to the intensity I(x) itself and to the
number of scatterers in the slice; the latter is expected
to proportional to the volume or thickness of the
slice:

dI = – I(x) dx

where the proportionality constant is called the
turbidity. Integrating across the full pathlength of the
sample:

  0
xI x I e

I(x) I(x) + dI

dx

Sample



Source

I0 It
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In particular   0tI I I e  

Solving for :

0 0

0

1 1
ln ln

t s

I I

I I I
  

 

which is the analog of Beer’s law for the specific
absorption coefficient (except that the decrease in
intensity here is due to turbidity – not absorption). In
most scattering experiments, the fraction change in
intensity is very small, then the logarithm function
can be replaced by a one-term Taylor series
approximation:

0

sI

I
 


for

0

1sI

I


Next we calculate Is from a surface integral of is over

a sphere of radius r :

2
2

0 00 0

sins sI i
d r d

I I

 

      

where  and  are the two angles in spherical
coordinates. The ratio of intensities calculated above
is called the turbidity. When the scattering is given
by (46), the turbidity becomes

 
16

3 1 2

KC

M BC


 


(47)

Two types of experiments can be performed.

Expt. #1) Measure  vs. . If a spectrophotometer is
used, we can vary the wavelength of the incident
light. Our theory is based on turbidity being caused
by scattering. Then

 –4

Then a plot of log  versus log  should be linear with
a slope of –4. Obtaining this result is strong
confirmation that turbidity is due to scattering. The
other major source of turbidity is absorbance of light
by the sample. But absorbance typically displays
non-monotonic behavior with wavelength: peaks of
turbidity occur at specific wavelengths at which
absorbance takes place.

Expt. #2) Measure  vs. C. If our solute is a polymer
of unknown molecule weight M, this data will allow
us to determine M. The equations above express
concentration C in mass per volume, which can be
determined without knowing the molecular weight.
(47) can be rearranged to yield a straight line in its
dependence on C:

1
2

HC
BC

M
 


(48)

where
 

23

4

3216

3 3 A

n dn dCK
H

N

   
 



Below is plotted turbidity data for polystyrene
solutions in methylethyl ketone obtained at 25ºC
using light having  = 436 nm. Results for three
different fractions (having different molecular
weights) are shown:

The linearity of the points is consistent with
expectations based on (48). This equation suggests
that the intercept of the straight lines is the molecular
weight of each fraction (116, 180 and 270 kDa) and
the slope could also be used to infer B.

Polydisperse Samples

Suppose that each fraction is polydisperse. In
other words, suppose that in volume V, we have ni

moles of polystyrene having molecular weight Mi.

What type of average molecular weight is obtained
with this turbidity experiment? To answer this
question, we assume that each fraction contributes
independently of other fractions to the total turbidity
and total concentration measured:

i i
tot i

i i

n M
C C

V
   (49)

tot i
i

   (50)

The average molecular weight is defined by the
intercept of (48):

1tot

tot

HC

M



and tot

tot

M
HC


 (51)



06-607

Copyright© 2010 by Dennis C. Prieve

The contribution to turbidity of each fraction can also
be calculated from (48):

1i

i i

HC

M



or i i iHC M 

Substituting (49), (50) and (52) into (51

i
tot i

tot i
i

H

M
HC H C




  




i

H



i

i in M

V




i
i

i i

M

n M

V

 2
i i

i

i i
i

i

n M

n M
 





Thus the appropriate average is the weight
molecular weight of the mixture (since the
contribution of each term to the average is weighted
by the molecular weight).

Static Light Scattering Experiments: Angle
Dependence

Light scattering experiments today typically use a
laser as a light source. The sample is held in a 1 cm
diameter glass cylinder a few cm long (the small
black square in the schematic below). The detector is
usually a photomultiplier tube (PMT) which is held
by a goniometer, a device which allows the detector
to be rotated around a vertical axis through the center
of the sample to detect light scattered in various
angles relative to the direction of the incident light

Usually the goniometer rotates in a horizontal plane.
This plane contains both the wave vector

incident beam as well as the wave vector

scattered rays. The plane containing both of these
wave vectors is called the scattering plane
angle between these two vectors is the scattering
angle sca:

sca

24

PDF generated

The contribution to turbidity of each fraction can also

i i iHC M  (52)

51):

H i iC M

i i

i

n M

V


2
i i

w
i i

n M

M
n M

 

weight-average
weight of the mixture (since the

contribution of each term to the average is weighted

: Angle

Light scattering experiments today typically use a
is held in a 1 cm

diameter glass cylinder a few cm long (the small
black square in the schematic below). The detector is
usually a photomultiplier tube (PMT) which is held
by a goniometer, a device which allows the detector

around a vertical axis through the center
to detect light scattered in various

angles relative to the direction of the incident light.

meter rotates in a horizontal plane.
This plane contains both the wave vector kinc for the

incident beam as well as the wave vector ksca for the

The plane containing both of these
scattering plane. The

angle between these two vectors is the scattering

kinc

Einc
ksca

sca



The scattering angle sca is not the same as the

angle in spherical coordinates 

measured from the axis aligned with the electric field
for the incident light (see sketch on page

The angular dependence of scattering depends on
the polarization of the incident light.
incident beam is a LPPW with the electric field
oriented horizontally (in the scattering plane

sca = /2 – 

and (43) predicts that the scattering intensity behaves
like

2 2 2
2

sin sin cosr sca sca
      

which is plotted as the red curve in the polar plot
below (a figure eight on its side).

Case 2) On the other hand, if the incident light is
polarized such that Einc is vertical

plane coincides with the equatorial plane of the
sphere which has  = /2 for all points.
scattering angle varies the second angle of spherical
coordinates (i.e. the azimuthal angle
all scattering angles, then (43
scattering intensity behaves like a constant:
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inc
sca

sca

is not the same as the polar

 which is the angle
measured from the axis aligned with the electric field
for the incident light (see sketch on page 20).

The angular dependence of scattering depends on
the polarization of the incident light. Case 1) If the
incident beam is a LPPW with the electric field

cattering plane), then



predicts that the scattering intensity behaves

2 2 2sin sin cosr sca sca       (53)

which is plotted as the red curve in the polar plot
below (a figure eight on its side).

On the other hand, if the incident light is
vertical, then the scattering

plane coincides with the equatorial plane of the
for all points. Varying the

scattering angle varies the second angle of spherical
coordinates (i.e. the azimuthal angle ). If  = /2 for

43) predicts that the
scattering intensity behaves like a constant:

0

30
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300

330
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 2 2
2

sin sin 1r
     (54)

which is a constant for different scattering angles
(shown as the black circle in the polar plot above).

Case 3) Light from the sun (and most light
sources other than lasers) is unpolarized, which
means that the electric field of the light is not
oriented in a particular direction (except that E is
always perpendicular to k but this still leaves a
degree of freedom). Then the angular dependence of
scattering turns out to be the arithmetic average of
horizontal and vertical polarization [i.e. (53) and (54)
]:

21 cos

2
sca

r
 

 

which is plotted as the blue curve in the figure above.

Scattering from Larger Particles: Rayleigh-Debye
Scattering

Reference: van de Hulst, p85f and Kerker, p414.

Reading: Hiemenz §§5.5, 5.6

Rayleigh scattering requires that all the dipoles of
each particle must be oscillating in unison. This will
be true only if each atom in the particle sees the same
electric field. Generally, this requires that the largest
dimension of a particle must be very small compared
to the wavelength of the incident light:

2R < /20 (55)

Atoms in larger particles are not oscillating in unison.
As a result, their scattering intensity does not add
linearly as Rayleigh scattering theory assumes.

Rayleigh recognized these effects and took them
into account in a series of papers published in 1910,
1914 and 1918. Further contributions were made by
Debye in 1915. The basic problem is to compute the
total phase difference between radiated light reaching
the detector from an arbitrary pair of atoms in the
particle. This total phase difference will determine if
interference is constructive (as assumed in Rayleigh
scattering theory) or destructive, or somewhere in
between.

The sketch above shows two arbitrary atoms (the two
dots) separated by a vectorial displacement r. Also
shown are two unit vectors: ninc denotes the direction

of incident LPPW and nsca denotes the scattering

direction. These two vectors also define the plane of
scattering.

The dot at the right is further from the incident
light source (the reference plane for incident wave)

than the dot at the left by a distance ninc
.r. This

causes a phase lag (in radians) of

1 = kninc
.r

where k = 2/ for the incident light. But the same
dot is actually closer to the detector plane by a

distance nsca
.r. This causes a negative phase lag of

2 = -knsca
.r

The total phase difference is obtained by adding

(r)  1 + 2 = k(ninc-nsca).r (56)

The figure above shows the vector addition
(subtraction). From the geometry of the right triangle
formed by bisecting the isosceles triangle, we can
deduce that the length of the difference vector is

2 sin
2

inc sca


 n n

and so on. Once we have , the phase factor is
calculated as ei. This is then summed over all pairs
of atoms in the two bodies:

reference plane
(incident wave)

detector plane

ninc

nsca

r


n rinc
.

n rsca
.

ninc nsca

ninc-nsca

2


2

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  1 2

1 2

i idV dV e e dV
    

r r

r r

To make it dimensionless, we divide by volume
squared:

 

2

2

ie dV
P

V



 


The result depends on the scattering angle for a
particular shape and size of particle representing the
region V. This is called the form factor

Form Factor for Spheres

Rayleigh (1914) worked out the result for a
sphere of radius a:

sphere    
3

3
sin cosP u u u

u

 
   

 

where
4

2 sin sin
2 2
sca scaa

u ka
 

 


Here P is a dimensionless correction factor
total power radiating from the scatterer.

The function P(u) is plotted above. It seems to decay
almost monotonically to zero.
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2
idV dV e e dV

  

To make it dimensionless, we divide by volume

(57)

depends on the scattering angle for a
particular shape and size of particle representing the

form factor.

eigh (1914) worked out the result for a


2

sin cosP u u u
 
 
 

(58)

2 sin sin
2 2
sca sca 

(59)

is a dimensionless correction factor – not the
total power radiating from the scatterer.

It seems to decay

But if we plot the same data on semi
(above), we see quite different behavior. Note the
appearance of many maxima separated by deep cusps
(values of u at which P vanishes). This leads to
complicated scattering patterns when the particle size
exceeds a certain value.

Form Factor for Random Coils, Rods, Disks

The form factor for other shapes has
worked out and the results are shown in the figur
below (p433 of Berg):

where the x-axis is u defined by
sphere radius a is replaced by the disk radius, half the
rod length or the radius of gyration of random coils.
Note that the functional form of
different shapes.

This form factor is used to correct the
dependence of simple Rayleigh theory for the effect
of interference arising because not all the atoms in a
particle are oscillating in unison.
scattering from solutions is described by
terms of is/I0.

   

0 0

corrected uncorrected
Rayleigh

c sca s scai i

I I

 
 

 

If we are only interested in the scattering relative to
that scattered forward in the direction of the incident
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But if we plot the same data on semi-log coordinates
(above), we see quite different behavior. Note the

separated by deep cusps
es). This leads to some

scattering patterns when the particle size

Form Factor for Random Coils, Rods, Disks

The form factor for other shapes has also been
are shown in the figure

defined by (59) except that the
is replaced by the disk radius, half the

rod length or the radius of gyration of random coils.
Note that the functional form of P(u) differs for

This form factor is used to correct the angular
simple Rayleigh theory for the effect

of interference arising because not all the atoms in a
ison. For example,

scattering from solutions is described by (46) in

 

corrected uncorrected
Rayleigh

c sca s sca
scaP 

 

(60)

If we are only interested in the scattering relative to
that scattered forward in the direction of the incident

20 25 30
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light, we could substitute is/I0 = cos2(sca), which

was used for the plots below.

The above polar plot shows the scattering pattern for
20 nm polystyrene (PS) latex spheres (n = 1.67) in
water (n = 1.33) when illuminated by a HeNe laser
(0 = 623.8 nm in vacuum or 1 = 0/n1 = 469 nm in

water). These particles are very small compared to
the wavelength: 20nm/1 = 0.043. The pattern in red

is virtually indistinguishable from cos2(sca) (given in

blue), i.e. the simple Rayleigh theory. Recall from
(55) that the simpler Rayleigh theory was valid for
particles whose diameter was less than 1/20 = 0.05 of
the wavelength.

Raising the particle size an order of magnitude to 200
nm (above) causes the backscattering to become
significantly weaker than the forward scattering, but

even forward scattering is beginning to show some
deviation from cos2(sca).

Increasing the particle radius a bit more to 0.6 m
(above), which is just a little larger than the

wavelength in water (0.6 m/1 = 1.3), causes the

backscattering pattern to disappear from the figure
above left while the forward scattering pattern has
become significantly distorted: with scattering falling
off more sharply with angle than Rayleigh’s simple
theory predicts.
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Actually, backscattering has not completely vanished
as can be seen in the figure above right in which the
radial axis has been made logarithmic.

Lecture #9 begins here

Inferring Size from Angle Dependence

For Rayleigh scatterers, the angular dependence
of scattering contains no information on the size of
the scatterer. But for particles which are large enough
to have a form-factor different from unity, the
angular dependence contains information about the
size.

For example, the plot below shows the angular
dependence of scattering intensity calculated for
polystyrene (PS) latex spheres of different size (2a =

0, 0.2, 0.4, 0.6, 0.8 and 1.0 m) in water. The
incident light from a HeNe laser has 0 = 515.5 nm in

vacuum (or  = 387.6 nm in water) and is
horizontally polarized. Then the uncorrected angular
dependence from Rayleigh scattering is cos2(sca)

The strong intensity dependence on size has been
removed by normalizing the scattering results by the
scattering at zero degrees. Nonetheless, you can
clearly see that size affects the rate of decay with
scattering angle at small angles.

In the limit of small scattering angles, we can
approximate the form factor (58) using a Taylor
series

   2 41
5

1P u u O u  

Truncating after the u2 term and substituting u from
(59)

2 2
2

2

16
1 sin

25

scaa
P

  
   

 
(61)

and taking the ln of both sides:

 
2 2

2
2

16
ln sin

25

a
P

  
    

 

Then a plot of lnP vs sin2(/2) should be linear and
its slope would permit evaluation of the particle size.

Scattering from Solutions: Zimm Plots

To obtain the size M of an unknown polymer
solute, we can vary either the scattering angle sca or

the mass concentration C of the polymer.

The Rayleigh scattering result is given by (46);
multiplying by the appropriate form factor for a
random coil polymer:

   
2

2
0 0

sin

1 2
c s

sca sca
i i KC

P P
I I M BC r


   


(46)

Recall that sin2 = cos2sca for horizontal

polarization of the incident light, sin2 = 1 for
vertical polarization, and sin2 = (1+cos2sca)/2 for

unpolarized light.

Experimental data is usually plotted in terms of
the Rayleigh ratio which is defined as

 
2

2
0 1 2sin

c
sca

ir KC
R P

I M BC
   



In the same way that turbidity was transformed to
create a quantity that was linear in C [see (48)], we
can also transform the Rayleigh ratio

 
1 1

2
sca

KC
BC

R M P

 
  

 

Substituting the counterpart to (61) which is
appropriate for random coils:

2 2
2

2

161
2 1 sin

23

g sca
RKC

BC
R M

                
(62)

where 2
gR is the mean-square radius of gyration of a

random polymer coil (another measure of its size).

The minus sign in (61) becomes a plus sign because
the term in square brackets represents the inverse.

 The shape of a “random coil polymer” resembles a
Brownian random walk in 3-D. Just like the mean-square
displacement is proportional to time, the mean-square
radius of gyration is proportional to the number of
monomer segments (like the number of steps). See §2.7 in
Hiemenz for more information.
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Below is a graph of scattering data (black points)
in which both scattering angle and polymer
concentration are varied. The data is for cellulose
nitrate dissolved in acetone.

The nearly vertical lines through the black points
represent regressions of data for the same
concentration but different scattering angle
triangles at the bottom of these lines represent the
extrapolation to zero scattering angle
horizontal lines represent regressions of data for the
same scattering angle but different concentrations.
The triangles at the left end of each of these lines
represents the extrapolation to zero concentration.

The regression of either set of triangles should
yield the same y-intercept. The value of this
intercept is the limit of (62) for both C

→ 0:

0
0

1
lim

sca

C

KC

R M 
 



The slopes of the two lines through th
triangles also have meaning which can be inferred
from (62):

 
2 2

2 2
2

16, 0

sin 3

gRdy C

d M

 




 0,
2

dy C
B

dC

 


Application to Flocculation Studies

Later in this course, we will discuss aggregation
(or flocculation) of colloidal dispersion. Light
scattering can also be used to study the rate of this
process. If I use (45) instead of (36) in

29
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Below is a graph of scattering data (black points)
in which both scattering angle and polymer
concentration are varied. The data is for cellulose

The nearly vertical lines through the black points
epresent regressions of data for the same

concentration but different scattering angles. The
triangles at the bottom of these lines represent the

scattering angle. The nearly
horizontal lines represent regressions of data for the

me scattering angle but different concentrations.
The triangles at the left end of each of these lines
represents the extrapolation to zero concentration.

The regression of either set of triangles should
intercept. The value of this

C → 0 and sca

The slopes of the two lines through the two sets of
which can be inferred

2 2
gR

d M

B

will discuss aggregation
(or flocculation) of colloidal dispersion. Light
scattering can also be used to study the rate of this

in (35) and (43),

then multiply by the number of particles per unit
volume N, the Rayleight ratio behaves like

2R NV 

where V is the volume of one scatterer. During
flocculation two independent scatterers combine to
form a single scatterer having twice the volume

If all singlets combined in this way we would be
obtain half as many particles with each one having
twice the volume. But according to
change the scattering by a factor of (1/2)2
aggregation proceeds, the scattering increases at a
rate that related to the rate of aggregation.

Dynamic Light Scattering Experiments

Reading: Hiemenz §5.8

The scattering signal from small sample volumes
tends to be noisy. But this “noise” actually contains
information regarding the size of the scatterers. For
example, the figure below (taken from Berg, p439)
shows the raw scattering signal for three differ

sizes of polystyrene latex particles: 0.085

0.220 m (b) and 1.011 m (c):

While each signal is some random fluctuation around
a mean value, larger particles clearly
fluctuations than smaller particles.
fluctuations arise because the PS particles undergo
Brownian motion so the relative distance between
any two particles in the sample volume changes with
time. This changes the nature of the interference in
light scattered from any two particles from
constructive interference to complete destructive
interference. The rate of change is related to the
diffusion coefficient of the Brownian particles.

The extraction of the diffusion coefficient from
such noisy data involves computing the
autocorrelation of the scattering intensity

Spring, 2010
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then multiply by the number of particles per unit
behaves like

2R NV (63)

is the volume of one scatterer. During
flocculation two independent scatterers combine to
form a single scatterer having twice the volume

ombined in this way we would be
obtain half as many particles with each one having
twice the volume. But according to (63), this would

by a factor of (1/2)22 = 2. As
aggregation proceeds, the scattering increases at a
rate that related to the rate of aggregation.

Experiments

The scattering signal from small sample volumes
tends to be noisy. But this “noise” actually contains
information regarding the size of the scatterers. For

below (taken from Berg, p439)
the raw scattering signal for three different

sizes of polystyrene latex particles: 0.085 m (a),

While each signal is some random fluctuation around
clearly have slower

ations than smaller particles. These
fluctuations arise because the PS particles undergo
Brownian motion so the relative distance between
any two particles in the sample volume changes with
time. This changes the nature of the interference in
light scattered from any two particles from complete
constructive interference to complete destructive
interference. The rate of change is related to the
diffusion coefficient of the Brownian particles.

The extraction of the diffusion coefficient from
such noisy data involves computing the

orrelation of the scattering intensity



06-607 30 Spring, 2010

Copyright© 2010 by Dennis C. Prieve PDF generated April 28, 2010

     
0

0

1
lim

t T

d d
T

t

C t i t i t t dt
T





 
 

  
  

 (64)

This function describes how strongly the intensity
measured at some later time t+td is correlated with

the intensity at current time t. For example, if i(t+td)

is strongly correlated to i(t) (for example if td=0),

then their product will be i 2(t) and we obtain

  20C i

On the other hand, at very large delay times, we
expect that i(t+td) will be completely uncorrelated to

i(t). For half of the t's in the integral, i(t+) will be

greater than the mean i and for the other half

i(t+td) will be smaller than the mean. If there is no

correlation, we just replace i(t+td) by i . Then (64)

yields

  2
C i  (65)

For virtually all functions i(t),
22i i and C(td)

decays monotonically from one limit to the other as
the delay time td increases.

For monodisperse particles (all have same size),
the normalized autocorrelation function decays
exponentially with the delay time td:

 

 

 

2

22
2

2 2

,

,
1 exp 2

d

d
d

g s t

C s t i i
s Dt

i i




  

 

(66)

where is an instrument constant and

4
sin

2
scas





Example 5.5: Experimental results for the enzyme
phosphofructokinase in water at 20ºC is given by the
graph below. If the density of the enzyme (protein) is
1.35 g/cm3, find the apparent molecular weight.

Solution: Replotting the data so as to get a straight
line:

According to (66), the slope of this line is:

2
11 m

slope 2 5.78 10
s

D     

or
2

11 m
2.88 10

s
D  

Treating the enzyme as a sphere, we can infer its
hydrodynamic radius by substituting Stokes law (16)
into Einstein’s equation (15). The result is called the
Stokes-Einstein equation for the diffusion
coefficient:

Einstein Stokes

6 H

kT kT
D

f a
 



Solving for the hydrodynamic radius aH; then

substituting k = 1.38110–23 J/ºK, T = 293ºK,  =
0.001 Pa-sec and D = 2.8810–11 m2/sec:

6
H

kT
a

D



= 7.4 nm

s2td (1010 s/m2)
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g2(s,td)
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The molecular weight of this enzyme is 478 kg/mol
and the density is 1.35 gm/cm3. These values can be
used to estimate the mass and volume of one
molecule:

23

478 kg

6.02 10
m 


= 7.9410–22 kg

22

3

7.94 10 kg

1.35

v
g

cm


  5.8710-25 m3

Treating this volume as a sphere, we can calculate an
apparent radius:

1 3
3

4

v
a

 
  

 
= 5.2 nm

As with sedimentation equilibrium and sedimentation
rate, these two ways of estimating the size of the
enzyme yield different values

Ha

a
= 1.43

The volume v represents the “dry” volume. Any
bound water would add to this volume and the
apparent radius, although the required increase in
radius (7.4 – 5.2 = 2.2 nm) is much larger than a
single water molecule. A more likely explanation is
that the enzyme is not spherical in shape. An
ellipsoid having the same volume v would have a
larger friction coefficient f than a sphere, which
would correspond to a smaller D and a larger
apparent hydrodynamic radius aH.
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Lecture #10 begins here

Surface Tension

The video Surface Tension in Fluid Mechanics
530.427 S961 (which we viewed) contained many
demonstrations of bubble, drop and particle motion
caused by surface tension. In this chapter, we will
analyze several of the phenomena demonstrated by
this video.

Molecular Origin of Surface Tension

In thermodynamics, the Gibbs free energy is an
extensive property of material whose value is
proportional to the mass or volume of material.
When the system consists of a mixture of two or
more phases, the free energy also contains a
contribution which is proportional to the surface area
between the phases. This contribution is called
surface tension (units are energy per unit area or
force per unit length).

Such a contribution arises from intermolecular
forces. All molecules experience van der Waals
attraction for one another. Consider a single water
molecule buried deep in a pool of water. Such a
molecule is represented by the blue dot in the lower
right of the figure below. This interior water
molecule is surrounded on all sides by other water
molecules and is pulled equally in all directions
(indicated by the four arrows). As a result it feels no
net force.

Next, consider a second water molecule located
next to the air/water interface. Such a molecule is
represented by the blue dot in the upper left of the
figure above. Owing to the very low density of air
compared to water, there are virtually no molecules
located above our interfacial water molecule.
Consequently, the intermolecular forces acting on it
are no longer balanced: it feels a net force pulling it
normal to the interface into the pool.

All liquid molecules near the interface experience
a net force normal to the interface pulling them back
into the liquid. Each interfacial molecule then moves
away from the interface, but conservation of mass

causes another molecule to take its place. In the
absence of other forces, the molecules of the liquid
phase will rearrange themselves to minimize the
interfacial area. Thus small droplets tend to be
spherical because that geometry has the smallest area
for a given volume.

Expanding Area of Soap Films

From a continuum point of view, the tendency to
minimize interfacial area is achieved by assigning a
contribution to the free energy of the air-water
mixture which is proportional to the interfacial area.
That contribution is called surface tension which we
will denote by .

To understand the consequences of surface
tension, consider a soap film (colored area in sketch
above) supported by a rectangular wire frame, in
which the right side of the wire frame is a slide wire
which can be moved either right or left. Suppose we
apply a force F and drag the slide wire to the right a
distance dx. The amount of work done is F dx. This
work goes into increasing the surface area of the soap
film by 2l dx which increases the free energy by 2 l

dx. The factor of two arises because the soap film
has two air-water interfaces: one each on the top and
bottom. Assuming there are no irreversible losses of
energy:

2dW F dx l dx  

where  is the surface tension. Dividing out the dx
we have

2F l  (67)

This force must be continuously applied to overcome
the thermodynamic tendency to reduce the interfacial
area and keep the film from shinking in area.

Values of the surface tension for various liquids
are shown at several temperatures in Table 1. Strictly
speaking, the term “surface tension” refers to the
interfacial free energy between a liquid and its vapor.

 The volume of liquid held in the film is a constant, so the
film also thins a little as the area is increased.

top view end view

air

water
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However, when the density of the gas phase is much
less than the liquid, replacing the vapor by a mixture
of vapor and air usually doesn’t change the value of
the interfacial free energy.

Replacing the gas phase by second immiscible
liquid does however change the interfacial free
energy. The term interfacial tension is the generic
term used for the interfacial free energy per unit area
between two arbitrary (immiscible) phases. Table 2
shows the effect of replacing the gas phase in contact
with various organic liquids by liquid water. At least
in these examples, the resulting interfacial tension
between liquids lies between the surface tensions for
the two liquids.

Laplace Pressure

One manifestation of surface tension is that it
induces a hydrostatic pressure difference across a
curved interface: the concave side of the interface has
higher pressure. Recall the demonstration in
Trefethen’s video in which he blows a soap bubble at
the end of a pipe, then holds his finger over the end
of the tube. When he removed his finger and
unblocks the tube, the soap bubble shinks forcing air
out through the tube. This demonstates that at
equilibrium, the pressure inside the bubble is greater
than outside.

Table 1

Surface Tension for Common Liquids*

*Taken from CRC Handbook of Chemistry & Physics, 87th edition, 2006-7.

Table 2
Surface vs Interfacial Tensions*

*taken from Hunter, Vol. 1, page 233.
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Consider a spherical soap bubble of radius R
composed of a liquid having surface tension .
Consider a force balance about the upper hemisphere:

Surface tension pulls downward with a force equal to
the product of surface tension  and the perimeter of
the soap film 2R [see (67)]. But we need to double
this because the soap film has both an inner and out
surface and both pull downward. Also acting
downward is the hydrostatic pressure outside the
bubble po. This exerts a downward force equal to the

product of the pressure and the projected area of the
sphere R2. The total of the downward forces is

downward: 22R + R2po

This is balanced by the upward force of hydrostatic
pressure pi inside the bubble:

upward: R2pi

Equating these two forces and solving for the
pressure difference:

soap bubble:
4

i op p
R


 

If instead of a soap bubble, we had a liquid drop in
air (or an air bubble immersed in liquid), we would
not need to double the perimeter. Then the pressure
difference turns out to be:

liquid drop:
2

i op p
R


  (68)

Notice that it doesn’t matter when the condensed
phase is inside or outside, the pressure is always
higher on the concave side of the interface (i.e. inside
the sphere).

Example: Calculate p for a 1 mm air bubble
submerged in water at 20ºC; at this temperature, the
surface tension of water is 73 mN/m (see Table 2).

Solution: Using (68):

mN
2 73

2 m

0.0005 m
i op p

R

 
      = 292 Pa = 0.003 atm

which is surely measureable but not large. To get a
pressure difference of 1 atm, we need a diameter of

2R = 2.88 m.

A sphere is a particular shape of interface. More
generally, two radii of curvature are needed to
characterize a curved surface and the pressure
difference is given by the Young-Laplace equation.

This derivation of the Young-Laplace equation is
adapted from Hunter, Vol 1.

Consider a drop of liquid (see figure above)
having surface tension  in air. A spheroidal cap is
bounded by a contour (the thick pink line) which is
everywhere the same distance d from some arbitrary
point X on the surface. The three distances denoted d
might not look equal in the diagram owing to
perspective.

In the sketch above, the edge of the spheroidal
cap has been re-drawn and re-scaled as the pink line
labelled ACBDA. Contours AB and CD (which lie
completely on the surface of the drop) both contain
the point X and form a right angle at point X. In the
limit that d→0, both AB and CD become circular arcs
of radius r1 and r2, respectively. From the

differential geometry of surfaces (Weatherburn,
1930), the directions of AB and CD (which are
perpendicular) can be chosen such that r1 is a

maximum (R1) and r2 is a minimum (R2).

Furthermore the sum of the reciprocals is
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independent of the orientation of the two
perpendicular axes AB and CD:

1 2 1 2

1 1 1 1
H

r r R R
   

This sum of the reciprocals of the radii is called the
mean curvature of the surface at point X, r1 and r2

are called the radii of curvature and R1 and R2 are

called the principal radii of curvature.

In the same way that a force F was needed to
overcome the thermodynamic tendency of the soap
film to shink in (67), the remainder of the surface
must exert a force to keep the area of the spherical
cap from shinking. This force is exerted tangent to
the surface as shown in the figure and its magnitude
for a differential arc length ds (the analog of l) is

dF ds 

The component of this force normal to the surface
(i.e. in the direction of the line XY) is

vertical sindF ds  

but when d→0, this angle is that subtended by an arc 
of length d and radius r1:

0 1

lim
d

d

r
 

and
0 1

lim sin
d

d

r
   

Thus vertical

1

dF d

ds r
 

This is the contribution to the vertical component of
the force from point A. Averaging similar
contributions from points B, C and D yields

vertical

1 2 1 2

1 1 1 1

2 2

dF d d

ds r r R R

    
      

   

Since the sum of the reciprocals of the radii is
independent of orientation, we can integrate over the
entire edge of the spherical cap. In the limit d→0, 
the edge is just a circle of radius d.

vertical
1 2 edge

of cap

2

1 1

2

d

d
F ds

R R



  
  

 




or 2
vertical

1 2

1 1
F d

R R

 
   

 

This vertical component of force on the cap is acting
downward. But the drop is not is motion; so another
force of equal magnitude but opposite direction must
be acting on the cap.

This force is hydrostatic pressure: the pressure
inside the drop is higher than the pressure outside by
p. The upward force due to this higher pressure is
p multiplied by the area of the disk (d2):

2 2

1 2

1 1
p d d

R R

 
     

 

or
1 2

1 1
p

R R

 
    

 

which is called the Young-Laplace equation. The
sum of the two radii reciprocals is called the
curvature J of the surface:

1 2

1 1
J

R R
 

Note that a flat surface has both radii infinite: R1 = R2

= ∞ and J = 0. In other words, a flat surface has zero
curvature.

Implication for Phase Equilibrium

Curvature can have a profound effect on phase
equilibria. For example, small water drops have a
higher vapor pressure than bulk liquid at the same
temperature. The reason is that the pressure inside the
drop is higher, which increases its Gibbs free energy.

First consider the usual problem of phase
equilibrium of a one-component system (say pure
water) between a liquid and its vapor at a flat
interface. Thermal, mechanical and chemical
equilibrium require:

TV = TL = T

PV = PL = P0(T)

GV = GL = G0

where P0(T) is the vapor pressure and G is the molar

free energy of either phase. There is only one
pressure at which the two phases coexist for a given
temperature and that is the vapor pressure.
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Now consider a second system at the same
temperature composed of uniform liquid drops in
equilibrium with their vapor. Because of the curved
interface, the mechanical equilibrium requirement is
different, making the pressure inside the liquid higher
than that of the vapor:

TV = TL = T

2L VP P
r


  (69)

GV = GL (70)

The pressure of both phases might be different from
that with a flat interface. The effect of pressure on the
Gibbs free energy can be calculated from:

T

G
V

P

 
 

 

where V is the molar volume. Changing the pressure
of the vapor from the vapor pressure P0(T) to

whatever PV is causes the following change in the
free energy of the vapor:

0 0 0

ideal
gas
law

V V VG P P
V

G P P

RT
dG V dP dP

P
   

where the second equation substitutes the ideal-gas
law for the molar volume of the vapor. Integrating

 0
0

ln
V

V P
G G RT

P T
 

A similar integration can be performed for the liquid.
One difference is that the molar volume of the liquid
is practically independent of pressure:

  0 0
L L LG G V P P T  

According to (70), the left-hand sides of the above
two equations are the same, so the right-hand sides
must also be equal:

 
  0

0

ln
V

L LP
RT V P P T

P T
 

Finally, we substitute PL from (69):

 
 

  

0
0

0

neglible

2
ln

2 2

V
L V

L L
L V

P
RT V P P T

P T r

V V
V P P T

r r

 
   

 

 
   


Assuming the increase in vapor pressure PV–P0 is

small compared to the Laplace pressure 2/r, we can
neglect the first term. Solving for the new vapor
pressure PV:

for drops:  0
2

exp
L

V V
P P T

rRT

 
  

 

which is called Kelvin's equation. Note that as r∞,
it correctly predicts no change in vapor pressure. But
as r becomes smaller, the vapor pressure increases.
One effect of this is that small drops evaporate much
more quickly than you would otherwise expect.

If we repeat this analysis for bubbles of water
vapor in a liquid, the vapor pressure is reduced rather
than increased:

for bubbles:  0
2

exp
L

V V
P P T

rRT

 
  

 

Example #1: Evaluate the vapor pressure of water in
droplets at 20°C as function of drop size.

Solution: = 72.8 mN/m and P0 = 17.535 mmHg.

The molar volume of liquid water can be calculated
from its density  and molecular weight M:

L M
V 


= 18.0 cc/gmol

Then Kelvin’s equation becomes

0
1.08 nm

expVP P
r

 
  

 

Substituting in various values of r:

r
0

VP
P

0

2

r
P



0

LP
P

10–1 m 1.000 0.001 1.001

10–3 m = 1 mm 1.000 0.063 1.063

10–6 m = 1 m 1.001 62.9 63.9

10–7 m 1.01 629 630

10–8 m 1.11 6,293 6,295

10–9 m = 1 nm 2.93 62,934 62,937
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Thus the effect is not significant except for
nanoparticles. Notice that the pressure in both
phases increases as the droplets get smaller.

Subcooled Vapor. The main importance of
Kelvin's equation is that it allows vapors to become
supersaturated. In order for a vapor to condense into
a liquid, small nuclei must first be formed. Since the
vapor pressure of such small droplets can be many
times larger than the usual vapor pressure,
homogeneous nucleation is usually prevented by
Kelvin's equation. Instead nucleation may take place
on a wall, or on a piece of dust or other nucleation
site.

Example #2: Let’s repeat this example for small
bubbles of water vapor in liquid, but let’s increase the
temperature to 100ºC where the vapor pressure of
water is P0 = 760 mmHg or 1 atm:

Solution: Then Kelvin’s equation becomes

0
1.08 nm

expVP P
r

 
  

 

Substituting in various values of r:

r
0

VP
P

0

2

r
P



0

LP
P

1 m 1 1.437e-6 1

0.1 1 1.437e-5 1

0.01 1 0 1

1e-3 m = 1 mm 1 0.001 0.999

1e-4 1 0.014 0.986

1e-5 1 0.144 0.856

1e-6 m = 1 m 0.999 1.437 -0.438

1e-7 0.989 14.37 -13.38

1e-8 0.898 143.696 -142.798

1e-9 m = 1 nm 0.341 1436.96 -1436.619

Notice that some of the (absolute) pressures
(indicated in red) are negative. This of course is
physically unrealistic and suggests that two phases
cannot co-exist for bubbles this small.

Superheated Liquid. Consider a dispersion of
small gas bubbles in a liquid. Now the liquid is on the
convex rather than the concave side of the interface.
So the pressure in the liquid phase will be lowered
rather than raised. For this reason it is difficult to get
homogeneous nucleation of gas bubbles when you

raise the temperature of a liquid or lower its
temperature.

When you heat water on a stove, you will see
bubbles first form on the wall, not in the interior, Of
course, there is a slightly higher temperature at the
wall. If I tried to boil water at room temperature by
lowering the pressure, bubbles would again form
only at the wall.

Unless we are extremely careful, there will be
pockets of air on the rough wall which has been
incompletely wet by the liquid. Even if these pockets
are only 10-7 cm in size, it will be much easier for
water vapor to expand these pockets than to nucleate
new bubbles in the bulk.

Lecture #11 begins here

Capillary Rise

When one end of an open capillary tube is
dipped into a pool of liquid, the liquid will be drawn
into the tube to a level above the horizontal surface of
liquid in the pool. In the figure above, this rise is the
distance h. This phenomenon is called capillary rise.

For a circular capillary tube composed of a
material which is fully wetted by the liquid (i.e. zero
contact angle: see next section), the shape of the
meniscus (the air-water interface inside the capillary)
is a hemisphere having the same radius r as the
capillary tube. Application of (68) reveals that the
liquid has a lower pressure than the air on the
concave side of the interface:

 A capillary is a long tube having a small bore (from
Latin capillus meaning hair).
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2
D Ep p

r


  (71)

Owing to its very low density, the hydrostatic
pressure in the air is everywhere 1 atm. The pressure
is also 1 atm in the liquid at the same elevation at the
horizontal interface (its curvature is zero so no
Laplace pressure difference) of the pool in the large
beaker:

pA = pB = pC = pD = latm (72)

The weight of the fluid in the capillary tube causes pC

> pE:

pC – pE = gh (73)

Since pC = pD according to (72), the left sides of (71)

and (73) are equal, so the right-hand sides must also
be equal:

2
gh

r


 

Solving for the capillary rise height h:

2
h

gr





The derivation above assumes a hemispherical
shape for the meniscus. More generally, the shape
depends on the contact angle  which will be
discussed in an upcoming section:

2
cosh

gr


 


(74)

Now cos is positive for fluids which wet the
capillary (water will wet clean glass) and negative for
nonwetting fluids (e.g. mercury on glass). So the
meniscus inside the capillary can be either higher or
lower than the bulk liquid outside:

Note that the product rh is a property only of the
fluid. The square root of this product is a number

which has units of length and is called the capillary
constant:

2
a rh

g


 


(75)

The expression (74) for capillary rise can be re-
written in terms of the capillary constant:

2

cos
a

h
r

 

Example: Compute the capillary rise of benzene in a
clean glass capillary with l mm diameter. Assume
cos = 1.

Solution:  = 29 mN/m at 20°C and = 0.879 g/cm3.
Eq. (74) gives h = 1.35cm using r = 0.05cm. Eq. (75)
gives a = 0.259 cm.
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Contact Angle

Surface tension arises because molecules residing
near the surface of a liquid possess a higher energy
than molecules in the bulk of the liquid. This
difference in energy results from the greater number
of neighbors which bulk molecules have compared to
surface molecules.

These same differences between surface
molecules and bulk molecules applies to solids as
well as liquids. Thus we might anticipate that solids
have a kind of surface tension associated with them.

One important difference is that solids cannot
deform to minimize their surface energy. So the
manifestation of surface energy of solids is a little
more subtle. An important illustration of surface
energy in solids is the contact angle.

When a drop of fluid is placed on a solid, the drop
may assume a variety of shapes, depending not only
on the volume of the drop and its surface tension, but
also on the solid. The figure above shows the same
drop applied to two different solids.

At equilibrium, the drop will form some angle
with the solid. This is called the contact angle. This
angle is independent of the size of the drop, but it
does depend on the particular solid and liquid used.
Thus, the contact angle represents an equilibrium
property of the solid/liquid interface.

By convention, contact angles are always measured
through the liquid and 0<<180°:

contact angle -- measured through the liquid
from the L/S interface to the tangent to
L/V interface at the 3-phase contact line

 < 90° -- Liquid is said to wet solid
 > 90° -- Liquid does not wet solid
 = 0° -- Liquid is said to spread on solid

Some typical values:

water on clean glass at 25°C:  = 0
mercury on clean glass at 25°C:  = 140°

As it turns out, the contact angle can be greatly
altered by contamination, especially of the solid
surface. The reason for this becomes obvious as soon
as we draw a connection between contact angle and
surface tension. Then any surface contamination
might be explained through a change in the surface
energy.

Derivation of Young's Equation

The fundamental equation governing contact
angles is

cosLV SV SL      (76)

which is called Young’s equation (a.k.a. Young-
Dupré equation) after Thomas Young who proposed
this equation in 1805.

LV is the surface tension associated with the

liquid-vapor interface. Recall that surface tension
can be thought of as a contribution to free energy
which is proportional to the surface area. Solid
surfaces also have energy and SV and SL are the

analogous energies for the solid-vapor and solid-
liquid surfaces. However SV and SL are called

interfacial tensions instead of surface tension (which
is reserved for liquid-vapor surfaces).

There are at least two different methods of deriving
this equation.

Partial Proof #1: The first is to consider the
interfacial tensions as forces exerted on the three-
phase contact line. A balance of the horizontal
components of the forces yields


right forceleft forces

cosLV SL SV    


One problem with this derivation is that the vertical
forces are not balanced. Supporters argue that the
contact line cannot move vertically so this balance is
not relevant.

Partial proof #2: A second approach is to say that the
drop assumes that shape for a given volume V which
minimizes the total interfacial energy.



LV

SL SV
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LV LV SL SL SV SVG A A A      (77)

If V is sufficiently small so that gravity does not
contribute significantly to the energy of the drop,
then we can assume that the LV interface is spherical
(because that shape generally minimizes the LV
surface area for a given volume).

Then the liquid must be a segment of a sphere of
radius R (also known as a spherical cap of height h).
A spherical cap has the following area and volume:

 2 2
LVA h r   (78)

 2 23
6

h
V h r


  (79)

The base of the “cap” is a disk of radius r whose area
is

2
SLA r  (80)

Finally the solid-vapor area is the remainder of the
total area of the plane not wet by liquid:

SV plane SLA A A  (81)

Our task is to find the shape which minimizes the
free energy of the system, given by (77). The figure
above contains four variables: r, h, R and . The
geometry of a right triangle provides two constraints
among them: see (86) and (87) below. Specifying the
volume of the spherical cap, (79) provides a third
constraint: 4 unknowns less 3 constraints leaves only
one degree of freedom for minimizing G. So let’s
consider that the total interfacial energy can be
written as a function of r alone:

G = G(r)

at the min: dG/dr = 0

Assume some change dr: what is the corresponding
dG? Note that dr will cause compensating changes in
both the solid-liquid and solid-vapor areas dASL and

dASV: According to (80) and (81)

 2 2SL SVdA dA d r r dr      (82)

(77) requires:

 0

LV LV SL SL SV SV

LV LV SL SV SL

dG dA dA dA

dA dA

     

     
(83)

Taking the total differential of (78):

 2 2LVdA hdh rdr   (84)

but dh is related by dr by the requirement that the
volume remain constant; taking the total differential
of (79) and setting it to zero:

   2 20 3 2 6
6 6

dh h
dV V h r hdh rdr

 
     

Solving for dh:
2 2

2hrdr
dh

h r






Substituting this result into (84):

2 2

2 2
2LV

r h
dA rdr

r h


 



Substituting this result and (82) into (83):

 
2 2

2 2
0 2 2LV SL SV

r h
dG rdr rdr

r h


        



After dividing through by the common factors:

 
2 2

2 2

cos

0LV SL SV
r h

r h



     



(85)

We just need to show that the quotient equals cos.
This can be shown using the geometry of the right
triangle:

From Pathogorus’ theorem:

2R  2 2 2R h r R    2 22Rh h r  

or 2Rh = h2 + r2 (86)

Now the cosine is ratio of the adjacent side to the
hypotenuse:

22 2
cos

2

R h Rh h

R Rh

 
   (87)

r

R–h

R
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where the second equation was obtained by
multiplying the numerator and denominator by 2h.
Substituting 2Rh from (86):

 2 2 2 2 2

2 2 2 2

2
cos

h r h r h

h r r h

  
  

 

With this substitution, (85) becomes Young’s
equation (76).

Lecture #12 begins here

Methods of Measuring Contact Angle

Ref: Adamson, p341

The contact angle ranks with surface tension as an
important parameter in the characterization of liquid
surfaces. However, from the analysis above, we see that
the contact angle reflects not only properties of the L/V
interface,butalsoof theS/Vand S/L interface.

Sessile Drop - Photograph drop, then measure contact
angle on enlargement.With clean,smooth, chemically
homogeneous surfaces, and good optics, you can
measure  ±1º. Alternatively, telescopes are
available with a goniometer eyepiece (from Greek
gonia, meaning "angle").

Tilted Plate - The angle of inclination of the plate is
varied until liquid surface on one side of the plate
remains flat right up to the plate. The angle of
inclination of the plate can be measured directly with
a protractor. A disadvantage of this technique is that
you need a much larger volume of liquid and more
space.

Wilhelmy plate - Although the angle can be
measured directly, the rise height can often be
measured more accurately. With proper illumination,
the termination of the menicus can be made quite
sharp. This height is related to the contact angle:

2

sin 1
2

gh
  



Perhaps the most accurate measurement of contact
angle has been made with this method (±0.1º).

Sessile Bubble - has the advantage that gas rapidly
reaches equilibrium with the liquid (recall that
contact angle reflects equilibrium properties).

Captive Bubble - A bubble, formed at the tip of a
pipette, is forced against the plate. The main
advantage is that the volume of the bubble is easily
varied.

Contact Angle Hysteresis

The experimental methods used to evaluate 

are not particularly difficult, but the results can be
quite confusing. For example, one complication
frequently observed is that the contact angle may
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depend on whether the edge of a sessile drop was
advancing or receding during the time just before
the measurement was taken (even if the shape is constant
at the time of the measurement). This is called contact
angle hysteresis.

A familiar example is rain drop on a window
pane, or any tilted plane. Explanations include:

 Contamination
 Roughness
 Surface inhomogeneity

All of which are likely to apply to a window pane.

Contamination. If the liquid contains a surfactant
which tends to adsorb at the L/V interface, motion
of the drop down the plane will transfer the surfactant to
the S/V interface behind the drop. This has the
tendency to make SV higher on the trailing side of the

drop, giving rise to a smaller contact angle.

Roughness. Likewise, if the surface has microscopic
roughness, the contact angle measured relative to an
apparent flat surface will depend on position.

Heterogeneity. For example, part of the solid
surface may contain patches of oil. If the drop
straddles the boundary of this patch, the contact angle at the
two s i d e s o f t h e d r o p w i l l b e different.
The drop keeps moving dow n the pla ne unt i l
t he ne t surface forces are large enough to overcome
gravity and halt the downward acceleration.
Generally this corresponds to a shape like that
shown, in which the advancing angle is larger than the
receding angle.

Although the difference in advancing and
receding contact angles for clean, homogeneous,
smooth surfaces tends to be within experimental
error, it can be enormous. A particularly bad case is
mercury on steel, in which a hysteresis of 154° has
been reported. Most of the values reported are
advancing contact angles.

Methods for Measuring Surface Tension

Capillary Rise

This technique was discussed earlier. One
disadvantage with this technique is that, in order to
deduce the surface tension from the measured rise height,
you must know the contact angle.

ideal:
2

cosgh
r


  

Fortunately, most liquids completely wet glass,
making a zero contact angle. This equation is "ideal"
because it

 neglects the weight of the meniscus, and it
 neglects departure from spherical shape.
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Corrections for both of these neglected effects can
be calculated.

Wilhelmy Plate

Suppose we slowly lower a vertical flat plate until
it just comes in contact with the liquid. The fluid will
pull down on the plate with a force which is in
addition to the dry weight of the plate.

costot plateW W W p     

where p is the total length of the contact line (i.e. the
perimeter of the cross section of the plate).

Using equations that describe the shape of the
interface, one can also show that rise height is related to
the surface tension and contact angle:

2

1 sin
h

a

 
   

 

where a is the capillary constant defined by (75).
Thus by measuring W and h, one can deduce both 

and .

Modes of operation:

 Slowly raise liquid until contact is made
 With plate initially submerged, slowly increase force

on plate until plate rising out of the liquid and
breaks free of it.

With good technique Wtot measured in either mode is
within 0.1%.

Drop-Weight Method

Suppose I form a liquid drop on the end of a
pipette, then slowly add more liquid to the drop until
finally it detaches from the pipette. To a first
approximation, the weight of the drop at detachment
is given by Tate's law (1864):

W = 2r 

This would be correct if, at the instant of detachment,
the drop had the shape of a hemisphere, so that the
surface tension acts in a purely vertical direction. In
most liquids, the shape of the drop is not that of a
hemisphere. Usually, the drop tends to "neck" just
before detaching (as shown above). The fact that the
surface of the drop is not tangent to the outer cylinder
of the pipette makes the vertical component of the
surface tension force less than 2r:

1 3
2

r
W r f

V

 
    

 

where V = W/g is the volume of the detached drop
and f is a correction factor which can be computed
knowing the shape of the drop just before
detachment.

Tensiometer (DuNouy Ring)

side view
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One of the most common commercial instruments
for measuring surface tension is the "Tensiometer,"
which is based on the principle of the DuNouy ring.
It is similar to the Wilhelmy plate in the sense that
W is measured, but instead of a vertical plate, a ring
is used.

Most commercial apparatuses of this type apply
the force by means of a torsion wire. This has the
advantage that it is easly to continuous and slowly
increase the force by twisting the wire. So the idea is
to start with the ring submerged and slowly increase
the force until the ring detaches from the liquid. To a
first approximation, this critical force exceeds the
weight of the dry ring by

Wtot = Wring + pcos

where p is the wetted perimeter, which equals twice
the circumference of the ring if r<<R:

p = 2 (2R)

Usually a platinum ring is used. Since Pt is
completely wet by most liquids

cos = 1

However, just because the contact angle is zero
doesn't mean the surface tension force will be purely
vertical. Just like the drop tends to neck just before
detaching, the liquid hanging from the ring tends to
neck just before detaching. This has the effect of
decreasing the vertical component of the surface
tension force by an amount dependent on the shape of
the meniscus. The final result is

3

4 ,tot ring
R R

W W R f
V r

 
     

 

where V is the meniscus volume.

Shapes of Bubbles and Drops

We have already pointed out that a small bubble
or drop will tend to be spherical. But when the radius
of the sphere becomes comparable to or larger than
the capillary radius, the shape is nonspherical. By
measuring how nonspherical the drop or bubble is,
we can deduce the surface tension.

Sessile drops or bubbles or pendant drops or
bubbles might be photographed and their shape
determined. Interpretation of this shape requires a
predictive model. Such a model was developed by
Bashforth & Adams (1883).

Detergency and Work of Adhesion

Consider a drop of oil adhering to a solid surface,
completely surrounded by water. Generally
speaking, it takes work to remove the drop from the
solid surface. This work of adhesion is the difference
in surface energies between the attached and
detached drop. To detach the drop, we must add
energy to form additional O/W and S/W interface,
but some of this is recovered from the decrease in
O/S:

WSOW = OW + SW – SO [=] J/m2

From Young's equation (76):

OW cos = SW – SO

Substituting this into the previous equation:
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WSOW = OW (l+cos) (2)

To make it easier to remove the soil by
mechanical scrubbing, we must reduce the work of
adhesion. This can be accomplished by adding
chemicals called "detergents" which either reduce
OW or make cos → –1 (completely non-wetting

drop).

Spreading of L/L Interface

Suppose I have two immiscible liquids and I
place a drop of one liquid on a pool of the more
dense liquid. What will happen? There are three
possible outcomes:

 form a lens
 spread to form monolayer
 spread to monolayer with excess in lenses

The choice among these depends of the relative
values of the three interfacial tensions. A balance of
horizontal components at the three-phase contact line
yields (This same result can be obtained by
minimization of surface free energy):

WV cos3 = OV cos1 + OW cos2

The left-hand side can be thought of as the tendency
to spread while the right-hand side represents the
tendency to contract. Suppose that:

 WV > OV + OW

No choice for the 's will be able to satisfy the force
balance -- the tendency to spread is just irresistible.
The liquid will spread out as a thin film until it
reaches the boundaries or until it becomes a
monolayer.

If this inequality is not met, the liquid will
contract to form a lens. Clearly, the difference in the
left and right-hand sides is a measure of the tendency
to spread. Thus:

S = WV – (OV + OW)

is called the spreading coefficient. Some examples of
various nonpolar liquids spreading on water:

On the basis of the value of the spreading coefficient,
we can say that hexadecane will not spread on water
while octanol will spread. Octane will just barely
spread. Contamination tends to reduce the surface
tension of water and thus it tends to reduce S and
oppose spreading.

Oil (O) OV OW S

n-hexadecane 30.0 52.1 -9.3
n-octane 21.8 50.8 +0.2
n-octanol 27.5 8.5 36.8
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Lecture #13 begins here

Adsorption from Solution

Addition of a solute can have an important effect
on the surface tension of the solution. Some examples
are shown below in Fig. 7.14 from Hiemenz:

where curve 1 is typical for the addition of simple
nonelectrolytes to water, curve 2 is for simple
electrolytes (e.g. NaCl) and curve 3 is for
amphipathic solutions (i.e. surfactants).

Thus the addition of solute can either increase or
decrease the surface tension of the solution.
turns out which effect applies to a given solute
depends on whether that solute concentration is
higher or lower at the interface between the liquid
and gas.

Solute Concentration at Interface

We tend to think of the interface between liquid
and its vapor as a discrete plane --
concentration profile is discontinuous at the interf
Indeed, the interface remains sharp even under the
best microscope using visible light. However
the much higher magnifications obtainable with an
electron microscope, the interface is fuzzy.
fuzziness is not connnected with the resolving power
of the microscope, but rather it is an intrinsic quality
of any interface.
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Adsorption from Solution

Addition of a solute can have an important effect
. Some examples

from Hiemenz:

where curve 1 is typical for the addition of simple
to water, curve 2 is for simple

electrolytes (e.g. NaCl) and curve 3 is for
(i.e. surfactants).

Thus the addition of solute can either increase or
surface tension of the solution. As it

out which effect applies to a given solute
depends on whether that solute concentration is
higher or lower at the interface between the liquid

interface between liquid
-- so that the

ofile is discontinuous at the interface.
Indeed, the interface remains sharp even under the

However, with
obtainable with an

electron microscope, the interface is fuzzy. This
fuzziness is not connnected with the resolving power

s an intrinsic quality

The concentration profile of the
continuously from one bulk value to another.
Typically, the change in bulk concentrations occurs
over a distance of about 10 Angstroms
concentration of solute also varies
distance across an interface. However, unlike
solvent profile – which is usually monotonic
solute centration profile often has maximum value
near the interface. Solutes which have this
characteristic are called:

surfactant - a solute which has a higher
concentration at the interface than i
bulk; a solute which lowers the surface
tension of the solution.

a sodium dodecyl sulfate molecule

The word “surfactant” is a contraction of
active agent;” in particular, this word is formed from
the underlined letters. Using the second part of this
definition, sodium dodecylsulfate (
structure shown above) and ethanol act as surfactants
in water, but NaC1 does not. As we shall soon
SDS and ethanol also satisfy the first part of this
definition.

adsorb - to accumulate at an interface (so that
equilibrium concentration at interface is
higher than bulk).

which is quite different from

absorb - to dissolve in the bulk (e.g. N

absorbs in water.)

The quantity which measures the extent of adsorption
is:

surface excess - amount of solute adsorbed per
unit area

 

  
0

0

bulk

x

x

C C dx

C C dx C C dx







 



  

   



 

where C and C refer to the bulk concentration

particular species (either solvent or solute)
phase corresponding to x <

respectively, where x0 denotes the location of th

plane dividing the two phases.
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of the solvent varies
from one bulk value to another.

Typically, the change in bulk concentrations occurs
over a distance of about 10 Angstroms. The
concentration of solute also varies continuously with
distance across an interface. However, unlike the

which is usually monotonic – the
solute centration profile often has maximum value

Solutes which have this

a solute which has a higher
concentration at the interface than in the
bulk; a solute which lowers the surface

a sodium dodecyl sulfate molecule

is a contraction of “surface-
this word is formed from

Using the second part of this
sodium dodecylsulfate (SDS, molecular

and ethanol act as surfactants
As we shall soon see,

also satisfy the first part of this

to accumulate at an interface (so that
equilibrium concentration at interface is

to dissolve in the bulk (e.g. NH3

The quantity which measures the extent of adsorption

amount of solute adsorbed per

 
0x

C C dx

C C dx C C dx


     

refer to the bulk concentration of a

particular species (either solvent or solute) in the
< x0 or to x > x0,

denotes the location of the
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Since Cbulk changes value at x0, the numerical

value of surface excess depends on where we choose
to draw the dividing line between the two phases.
The precise location of the dividing surface is
arbitrary. One common choice is

Gibbs dividing surface – x0 determined such

that solvent = 0.

This turns out to be a particularly convenient choice
because using this dividing surface, we can show that
surface excess also has the following meaning:

,
i

i T P

 
    

(88)

where i is the chemical potential (partial molar

Gibbs free energy) of component i.

Partial Proof: For a more complete derivation, see
Hiemenz §7.7. Here I will just reproduce the final
steps in the derivation so that you can see why Gibbs
choice of a dividing surface is convenient.

First one divides the properties of the system into
contributions from each of the bulk phases (denoted
by superscripts  and ) and from the surface
(denoted by superscript s):

G = G + G + Gs

s
i i iin n n n  

where G is the Gibbs energy and ni is the number of

moles of component i. Recall the Gibbs-Duhem
equation:

0k k
i i

i

n d 

where k =  or . This applies to either bulk phase
for any constant T,P process. The analogous
relationship for the surface “phase” turns out to be
(see Hiemenz §7.7):

0s s
i i

i

n d Ad   

Solving for d:

 We have dropped the superscript on i because at

equilibium, components will distribute themselves between

the phases such that
s

i i ii
       .

0

i i
i

solvent solvent solute solute

d d

d d

    

    





where
s
i

i
n

A
 

is call the surface excess of component i and it has
units of moles per area. For a binary solution, we
have only the solvent and the solute. Choosing the
dividing surface such that solvent = 0 and solving the

remainder for solute leads to (88) which is called

Gibbs adsorption equation.

For a thermodynamically ideal solution:

  ,
lni iT P

d RTd C 

Using this in (88):

,

1

ln
i

i T P
RT C

 
     

(89)

Note that if surface tension is decreased by the
addition of the solute, the solute must be adsorbed at
the interface (> 0). This is the case for most
nonelectrolytes and surfactants. On the other hand,
addition of a simple electrolyte like NaCl increases
surface tension, which implies negative adsorption
(< 0). Negative adsorption of ions arises because
of the strong electrostatic attraction between any ion
and the water dipole.

Addition of many solutes results in a linear
decrease in surface tension with ln(C) over a couple
of decades of concentration. For example, the figure
below (taken from p145 of Berg) shows the surface
tension of alcohol-water mixtures.
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Example: calculate the surface excess corresponding
to the linear regions of the data above.

Solution: each of the curves have a slope of

mN
36

mNm 30
log 1.2 m

d

d C




  

or
log mN

13
ln 2.303 m

d d Cd

d C


  

(89) gives

 

6

2

mN
13

molm
5.3 10

J m8.315 298 K
mol-K



 
  
 

   
 
 
 

To see if this is reasonable, let’s further calculate the
surface area per adsorbed molecule:

1
32

AN



Angstroms2

which is about 30% higher than the known cross-
sectional area of a hydrocarbon chain. Notice also
that the slope is the same for all chain lengths for the
alcohols in the figure (C2 through C8).

These two observations suggest that the alcohols
are adsorbing into a fairly compact monolayer with
their hydrocarbon chains protruding normal to the
air/water interface as shown in the cartoon below:

This would allow the polar –OH head group
(indicated by the circles in the cartoon above) to
remain in the water while the nonpolar hydrocarbon
tails protrude into the air. This also explains why the
slope becomes constant at high concentration: the
adsorbed layer becomes saturated.

Langmuir Isotherm

Adsorption at solutes at the air-water interface
generally follow a Langmuir adsorption isotherm:

  max

sat

C
C

C C


 


(90)

where max is the surface excess of the saturated

monolayer while Csat is the solute concentration in

the bulk solution roughly corresponding to the onset

of the saturated monolayer. For the alcohols in the
figure above, max = 5.3 mol/m2 for all while Csat

varies between 0.2 mM for octanol to 0.4 M for
ethanol.

For C ≪ Csat, the Langmuir isotherm is

approximated by

max

sat

C
C


 

and max

0
limads

C sat

L
C C


 

is called the adsorption length. This represents the
thickness of a layer of solution having concentration
C which contains the same number of molecules 

per unit area as adsorb. This parameter is a measure
of the tendency for the solute to adsorb: a larger
adsorption length means a stronger tendency to
adsorb. For the alcohols, Lads varies between 10 nm

for ethanol to 20 m for octanol. This can be
rationalized by noting that the longer the nonpolar
tail of the alcohol, the happier the molecule is at the
interface where it can place its tail in air.

Eliminating  between (89) and (90):

max1

ln sat

Cd

RT d C C C


 



or

 

max

max ln

sat

sat

dC
d RT

C C

RT d C C

   


   

Integrating from C = 0 and  = 0 (pure water) to C =

C and :

 

 

0 0

max

max

0

ln

ln

sat

C

C

sat

d RT d C C

RT d C C





    

  

 



0 max ln sat

sat

C C
RT

C

 
      

 
(91)

which is called Szyszkowski’s equation.

Another example of how surface tension is
affected by solute concentration is Fig. 7.15 from
Hiemenz:

water
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for the dodecylether of hexaethylene oxide [i.e.
H(CH2)12O(C2H2O)6] at three different temperature:

curve 1 is 15ºC, curve 2 is 25ºC and curve 3 is 35ºC.

For any concentration of the solute (a surfactant),
the surface tension decreases with temperature. This
also occurs for pure water where we argued that, as
we increase toward the critical temperature for water,
all differences between liquid and vapor vanish. It
was the difference in density of liquid and vapor
which was cited as the reason why water molecules
near the interface felt a net force pulling them into
the liquid, which is the molecular origin of surface
tension.

Like the corresponding data for the alcohols, this
solute also displays a linear decrease in surface
tension with the log of the concentration of solute.
However, the three straight lines do not have the
same slope: generally the slope is more negative for
higher tempature, suggesting that max increases with

temperature.

CMC’s
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Micellization

One dramatic difference between Fig. 7.15 and
the earlier figure with the alcohols is the leveling out
of the surface tension at higher concentrations. This
plateau is very typical of surfactant solutions.

Does this zero slope imply that  = 0 as suggested
by Gibbs adsorption equation (89)? Such a
drop in  from max to zero is highly unlikely.

Moreover, not only does surface tension show an
abrupt change in behavior with concentration at this
particular concentration, but several other properties
as well:

Aggregation of surfactant molecules into clusters
provides a plausible explanation for all of these
trends. These clusters are called:
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One dramatic difference between Fig. 7.15 and
the earlier figure with the alcohols is the leveling out

surface tension at higher concentrations. This
plateau is very typical of surfactant solutions.

= 0 as suggested
Such a sudden

to zero is highly unlikely.

Moreover, not only does surface tension show an
abrupt change in behavior with concentration at this
particular concentration, but several other properties

Aggregation of surfactant molecules into clusters
provides a plausible explanation for all of these

micelles - aggregates of surfactant molecules

The solute concentration above which micelles form
is called the critical micelle concentration
The process of micellization occurs with molecules
which are

amphiphilic – soluble in both polar and non
polar sovents

Amphiphilic molecules are usual
hydrocarbon chain (an alkane)
group (e.g. –OH or –SO4). The polar group is

sometimes called the head while the hydrocarbon
chain is called the tail. Here is the structure for SDS
(see page 46):

nonpolar tail
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aggregates of surfactant molecules

The solute concentration above which micelles form
ritical micelle concentration or CMC.

The process of micellization occurs with molecules

soluble in both polar and non--

Amphiphilic molecules are usually composed of a
attached to a polar

. The polar group is

while the hydrocarbon
Here is the structure for SDS

micelle

polar
head
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Since the molecule has both polar and non-polar
parts, it is soluble in both kinds of solvents.

In water, SDS forms spherical micelles with the
tails on the inside and the heads ors the outside. In
this way, the non-polar parts of the molecule are
away from the polar solvent, forming a non-polar
interior phase. In non-polar solvents, inverted
micelles are formed, having the polar group on the
inside. The number of molecules in a single micelle
depends primarily on the length of the hydrocarbon
chain: see Table 8.1 above.

Lecture #14 begins here

Any concentration of surfactant above the CMC
goes into forming micelles – not into increasing the
concentration of monomers. To clarify this point, let
C denote the total concentration of surfactant added
to a solution, which is distributed between monomer
surfactant molecules and micelles:

 
0 for

micelles
for

C CMC

C CMC
C CMC

N




 




 
for

monomer
for

C C CMC

CMC C CMC


 



   monomer micellesC N 

where N is the aggregation number (i.e. the number
of surfactant molecules per micelle).

Returning to Fig. 7.15 on page 49: the reason for
the plateau above the CMC is that C which appears in
(90) and (91) is the monomer concentration – not the
total concentration. Since the monomer concentra-
tion is constant above the CMC, so  and  are
constant above the CMC.

Solubilization

Surfactant solutions above the CMC can
solubilize otherwise insoluble material. This is
dramatically illustrated by certain organic dyes which
are insoluble in water. Because of the low solubility,
these dye solutions are practically colorless without
SDS. Addition of SDS at concentrations above the
CMC results in intensely colored solution. The dye,
being more soluble in non-polar solvents, has been
incorporated in the center of the micelle.

Surfactant Types

SDS is said to be an anionic surfactant. When it
is dissolved in water, it dissociates into a sodium ion
and a negatively charged (i.e. anionic) tail:

H(CH2)12SO4
–Na+ → H(CH2)12SO4

– + Na+

Other anionic surfactants include sodium stearate:

H(CH2)17COO–Na+

An example of a cationic surfactant is hexadecyltri-

methylammonium bromide (CTAB):

H(CH2)16N(CH3)3
+Br–

Of course, the polar group need not be ionic. Perhaps
the most common nonionic surfactants are the
polyethylene oxides:

H(CH2)nC6H4(OCH2CH2)mOH

which consists of a nonpolar alkane chain connected
through a benzene ring to a polar polyethylene oxide
chain. By varying the length of either chain, you can
achieve a wide variety of properties. They are
commercially available as the Brij® series (ICI
America).

 “Hexadecyl” is also called “cetyl” – hence the C in
CTAB.
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Phospholipids are an biologically important class
of surfactants. They have two tails instead of one.
They also tend to form bilayers which are the basis of
all cell membranes. One of them (dipalmitoyl
lecithin) is a lung surfactant which keeps the air
open in the lung by reducing surface tension; without
them capillarity would make breathing almost
impossible.

Micelle Shape

Spheres are not the only shapes which micelles
can take.

Other shapes include cylinders, lamellar bilayers and
vesicles. Vesicles are also bilayer structures.
the most common occurance of this bilayer
is in biological systems.
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Phospholipids are an biologically important class
of surfactants. They have two tails instead of one.
They also tend to form bilayers which are the basis of
all cell membranes. One of them (dipalmitoyl
lecithin) is a lung surfactant which keeps the air sacs
open in the lung by reducing surface tension; without
them capillarity would make breathing almost

which micelles

Other shapes include cylinders, lamellar bilayers and
Vesicles are also bilayer structures. Perhaps

bilayer structure

Lipid bilayers of phosphoglycer
important part of nearly all biological membranes
from cell walls to the lining of the gut. Their
in biology is to make transport of solutes
membrane highly selective.

Packing Factor

The shape of the micelle depends largely on the
architecture of the surfactant molecules
the size the headgroup relative to the size of the tail.
This is quantified in a dimensionless number called
the packing factor:

t t

h t h

v a
P

a a
 



where vt is the volume of the micelle core per

surfactant molecule, at is the cross

the headgroup and t is the length of the tail

think of the tail as a cylinder then the ratio of its
volume to its length would equal its cross
area. Thus the packing factor can also be thought of
as the ratio of the cross-section of the tail to the area
of the headgroup.
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Lipid bilayers of phosphoglycerides are a very
important part of nearly all biological membranes --

ing of the gut. Their function
to make transport of solutes through the

The shape of the micelle depends largely on the
architecture of the surfactant molecules: in particular,

p relative to the size of the tail.
This is quantified in a dimensionless number called

t t

h t h

v a

a a
 

is the volume of the micelle core per

is the cross-sectional area of

is the length of the tail. If we

think of the tail as a cylinder then the ratio of its
volume to its length would equal its cross-sectional
area. Thus the packing factor can also be thought of

section of the tail to the area
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The area occupied by the headgroup depends on
the balance between hydrophobic attraction between
tail segments near the outer edge of the core and
hydrophilic repulsion between the headgroups
themselves (as suggested by the figure above).

For surfactants having alkane tails, the fully
extended length and volume can be estimated from
known structural properties of alkane molecules:
normal alkanes have a C-C bond length of 0.154 nm
and a bond angle of 109.5º. The terminal methyl
group has a radius of 0.21 nm while the half length of
the bond between the alkane and the polar head is
0.06 nm.

Using this information we can deduce a formula for
the extended length of an n-carbon alkane chain:

  
 

0.21 0.126 1 0.06 nm

0.144 0.126 nm

t n

n

   

 



This is close to what Tanford (1980) recommends:

 0.154 0.1265 nmt n 

and   3 327.4 26.9 10 nmtv n   

Example: show that the packing factor must be less
than 1/3 in order to get spherical micelles.

Solution: let Rs denote the radius of the core of the

micelle. Dividing the volume of the core by the
volume of the tail of one surfactant molecule yields
the number of surfactant molecules (i.e. the
aggregation number):

34

3
s

a
t

R
n

v





Dividing the surface area of the spherical micelle by
the area per headgroup also yields the aggregation
number:

24 s
a

h

R
n

a




Eliminating na between these two equations:

3
t s

h

v R

a


Dividing both sides by the length of the tail yields the
packing factor:

1 1

3 3
t s

h t t

v R
P

a
  

 

Now the radius of the core must be less than the
extended length of the hydrocarbon tail (otherwise
you would have a vacuum at the center); in other

words Rs/ ≤ 1.

Larger values of the packing factor leads to other
shapes for micelles as shown in table 8.2:

109.5
0.154sin 0.126

2

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Lecture #15 begins here

Intermolecular Forces

Reading: Hiemenz Chapt. 10

Intermolecular forces are responsible for many
macroscopic effects:

 departure from ideal-gas behavior

 phase changes: condensation and
solidification

 surface tension of liquids

 instability of colloidal dispersions

van der Waals forces are so called because these are
the forces J.D. van der Waals invoked in this Ph.D.
thesis in 1873 to explain departures from ideal-gas
behavior. It was his thesis that first derived the van
der Waals equation of state for nonideal gas behavior.

van der Waals himself did not know precisely the
origin or nature of these forces. He just proposed that
intermolecular attractions existed and were the cause
of departures from ideal-gas behavior. Today we
know that there are several type of intermolecular
interactions that are important:

 dipole — dipole
 dipole — induced dipole
 instantaneous dipole — induced dipole

Charge-Charge Interactions

This is just the type of interaction described by
Coulomb's law in its most simple form.

1 2
2

1
=

4

Q Q
F

r

which is positive for repulsion (i.e. Q1Q2 > 0). The

sign convention on interaction energy is such that
repulsion also causes a positive potential energy W(r)
which requires

  dW
F r

dr
 

where W(r) is the work required to bring charges

from r =  to r = r:

      1 2=
4

r

r

Q Q
W r F r dr F r dr

r





     
 

which is the work to bring charges together from r' =

. We know that like charges repel one another and
produce

repulsion: Q1Q2 > 0  W > 0

Likewise, unlike charges attract:

attraction: Q1Q2 < 0  W < 0

This is the sign convention used for the interaction
energy W here and in the expressions below.

Charge-Dipole

Q

l

+q

–q

r
+

r
–

r

Here we have three charges in the system, rather
than two. We can calculate the force on the
monopole charge as the sum of the force from each
of the two charges, then integrate out to infinity to
obtain the potential. The result is

 
1 1

4

qQ
W r

r r 

 
   

  

When l<<r, we can approximate:

1
2

cosr r l   

1
2

cosr r l   

Then
2

1
cos

4

Qp
W

r
  


(92)

where p = ql

is the dipole moment. Note that the decay of energy
is more rapid with separation distance than for the
interaction of two monopoles.

Dipole-Dipole

p1

1
r

p2

2
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For each of the two point charges in the left dipole,
we have two terms — one for each charge in the right
dipole. For point dipoles, brought together at fixed
orientation, the interaction energy is

  



1 2
1 2 1 23

1 2

, , , 2 cos cos
4

sin sin cos

p p
W r

r
      



   

In the figure, we have shown the two dipole vectors
lying in the same plane with the line between their
centers. In general the three lines will lie in two
different planes.  is the angle between these two
planes (not shown in figure).

Charge-Rotating Dipole

In calculating the above energies, we have
assumed that the orientation of the dipoles was fixed.
But the dipole moment of a water molecule, for
example, undergoes rotary Brownian motion and can
sample all orientations. Each orientation has
associated with it some potential energy of
interaction (with a monopole or another dipole)
which determines the probability of finding that
orientation.

 
 , ,

, , exp
W r

P r
kT

  
    

 

where orientation requires two angles () to specify.
The proportionality constant is determined by
normalization of the probability density:

2

0 0

( , ) = ( , , ) sin = 1P r d P r d d
   

       
  

  

where the integration is over all orientations and
where  is a solid angle and shorthand for (). We
can now define an average interaction energy:

/
/ /= =av

W kT
W kT W kT

e d
e e

d


 








This average energy has the property that its
Boltzmann factor is the same as the average of the
Boltzmann factor over all orientations. In general,
this average is a complicated function. Suppose W is
always small compared to kT. Then we can replace
the exponential by its truncated Taylor series
expansion:

2
/

1
1

+ + ...
2

W kT W W
e

kT kT


 
 
 
 

Next we integrate over all orientations () of the
dipole:

- /

2

2

1
= -

1 1
+ + ...

2 ( )

W kTe d d Wd
kT

W d
kT

  



  



where d = sindd is an element of solid angle.
Then the integrals over the solid angle can be
computed as ...

2

0 0

d = d sin d = 4
 

      

Recall that for a ion interacting with a point dipole:

2

1
cos cos

4
o

Qp
W W

r
    



where Wo is the part of W which is independent of

orientation.

0

= 2 sin cos = 0oW d W d


     

The remaining integral is not zero, however, and

evaluating it we obtain for W < kT:

 

2 2

2 46 4
av

Q p
W

kTr
 



Notice that for a freely rotating dipole, the interaction
decays as r-4 instead of r-2. This came from squaring
the interaction energy. Also notice that the
interaction energy is now temperature dependent.

Free Dipole/Dipole

If both dipoles are free to undergo Brownian
rotation and if the interaction energy is small so that
their orientation is not strongly biased, then we can
perform a similar analysis which leads to:
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 

2 2
1 2

2 63 4
av

p p
W

kTr
 


(93)

once again assuming W < kT. This result for Wav

is sometimes called the Keesom interaction. Again
the orientation-average decays more rapidly with r
that for fixed dipoles and the interaction is
temperature dependent.

Charge-Neutral Atom

Suppose we have a neutral atom in the vicinity of
point charge or an ion. The electric field “given off”
by the ion will polarize the neutral atom, producing a
dipole. If the ion is positive, the dipole will point
away, resulting in attraction between the ion and the
induced dipole.

If the ion is negative, the dipole will point toward
the ion, resulting again in attraction. Now let's
quantify this description. According to Coulomb's
law, the force between two point charges is:

24

Qq
F

r




Thus the electric field given off by one of them, say
Q, is

24

F Q
E

q r
 



The strength of the dipole induced by this electric
field is

24

Q
p E

r


  


(94)

where  is the appropriate atomic polarizability
(either electronic or orientational). Now we can
compute the interaction energy between a point
charge and a point dipole. For a fixed permanent
dipole, this energy is given by (92):

2

1
cos

4
perm

Qp
W

r
  


(95)

This is the work required to bring a permanent dipole
from r= to r=r. In our case, the dipole moment is
not independent of r, so this expression is not directly

applicable. However, we can use this expression to
calculate the force between the charge and the
induced dipole at any separation (taking cos = ±1 so
as to obtain the expected attraction):

3

2

4

permdW Qp
F

dr r
   



Substituting p from (94):

 

2

2 5

2

4

Q
F

r


 



Finally, we compute the energy by integrating the
force from  to r:

 

2

2 42 4
ind

Q
W

r


 



If we had substituted (94) directly into (95), we
would obtain a result twice as large. Note that this
expression for the interaction between a point charge
and a neutral atom (induced dipole) decays more

rapidly (r-4) than the interaction of a point charge and

a permanent dipole (r-2).

Dipole-Neutral Atom

We just saw that a point charge can induce a
dipole in a neutral atom in such a way that an
attraction occurs between the two. In the same way a
permanent dipole also generates an electric field
which can induce a dipole in an otherwise neutral
atom.

 p

r

To quantify this description, we must first compute
the electric field associated with the permanent
dipole. Suppose we put a small test charge q in the
vicinity of the dipole. What force does the test
charge feel? For a point charge q interacting with a
point dipole p, we found the energy is given by (92):

2

1
cos

4

qp
W

r
  



The corresponding electric field is
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1 1
r

W W
W

q q r r
  

      
  

e
E e

Since W depends on  as well as r, the electric field is
not purely radial as in the charge-neutral atom
interaction. After performing the differentiation, we
obtain:

 
3

2 cos sin
4

r
p

r
   


E e e (96)

This electric field induces a dipole moment in the
neutral atom:

 
3

2 cos sin
4

ind r
p

r



      


p E e e (97)

Next we can compute the interaction between the
permanent dipole p and the induced dipole pind.

Recall that we previously computed the potential
energy of interaction for two fixed dipoles. The
result was a complicated function of the three angles
needed. That result can be expressed more
compactly using vector notation:

2 1 1 2permW    p E p E. . (98)

where Ei is the electric field produced by permanent

dipole pi. Substituting (96) and (97) into (98) gives:

2
permW E   E E.

Of course, in calculating the energy in (98), we
assume that the dipole moments are independent of
separation distance, whereas our induced dipole
depends on separation. Proceeding as in the previous
section, we could show that interaction energy is
halved as a result of the varying strength of the
induced dipole:

2

2
indW E


 

From (96):

 22 2 2
3

2
3

2cos sin
4

1 3cos
4

r
p

E E E
r

p

r

     


  


Finally
 

 
2

2
2 6

1 3cos
4

ind
p

W
r


   



Free Rotating Dipole - Neutral Atom

If we now let the dipole undergo rotary Brownian
motion and sample different orientations, the
“thermodynamic average” over the orientations is:

 

2

2 64

e p
W

r


 


(99)

which is sometimes called the Debye energy. Note
that if we substitute the expression orientational

polarization ( = p2/3kT), this result reduces to
Keesom energy (93) due to the interaction of freely
rotating dipoles. The Debye energy refers to the
contribution from electronic polarization, so we add a
subscript “e” to remind us.

Neutral Atom - Neutral Atom (Dispersion Forces)

Consider the interaction of two neutral atoms —
say two hydrogen atoms — which have no charge
and no permanent dipole. As we shall now see, an
attractive force still arises between them. To
correctly calculate this force, we would need to use
quantum mechanics. But we can get an intuitive
feeling for the origin and strength of the force by
applying classical mechanics to the Bohr picture of a
hydrogen atom:

The Bohr atom is an electron orbiting a proton.
Suppose the radius of the orbit is R. Then, at any
instant of time, there exists a temporary dipole
moment:

p = eR

This instantaneous dipole induces a dipole in a
neighboring hydrogen atom. The interaction can be
estimated by substituting this dipole moment into
(99):

 

 

2

2 64

eR
W

r


 


(100)

The electronic polarizability of a Bohr atom is given
by (36):
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 = R3 (101)

Finally, the Bohr radius can also be related to the
frequency of the orbit (). In classical mechanics, the
orbit radius is dictated by a balance of the
electrostatic attractive force and the centrifugal force



2 2

2

centrifugalelectrostatic

2

4

e mv h

R RR


 



where the second equation was obtained by equating
the kinetic energy of the electron (1/2)mv2 with the
ionization potential h; h is Planck’s constant and 

is the frequency. Equating these two forces yields
another expression for the Bohr radius:

 

2

2 4

e
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(102)

(100), (101) and (102) can be combined to give:
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which is within a multiplicative factor (3/8) of the
rigorous expression derived by London (1937) using
quantum electrodynamics:

 
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4 4

h
W

r

 
 



for the interaction of two identical atoms. For
different atoms, the corresponding result is

 
 

1 2 1 2
2 6 1 2

3

2 4

e e h
W r

r

   
 

  
(103)

Van der Waals Forces

Consider an un-ionized gas -- one composed of
polar molecules, but having no monopole charge.
What are the forces which might act between such
molecules? First, we have the interaction of freely
rotating dipoles (Keeson energy) given by (93):

 

2 2
1 2

2 63 4
orient

p p
W

kTr
 



Next we have a freely rotating dipole causing
electronic polarization of the other molecule (Debye
energy) given by (99):

 

2 2
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2 64

e e
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Finally, we have the dispersion energy resulting from
an instantaneous dipole in one molecule causing an
electron polarization in a neighboring molecule
(London energy) given by (103):

 
 

1 2 1 2
2 6 1 2

3

2 4

e e h
W r
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   
 

  

Notice that each of these forces is proportional to r-6.
Their collective effect is called the van der Waals
interaction:

 
6 6

orient ind dispvdw
vdw

C C CC
W r

r r

 
   

These are the forces which cause a departure from the
ideal gas law as first considered by van der Waals in
1873, although he did not know the origin of the
forces nor the functional form of the distance
dependence. Recall that his celebrated equation of
state is given by:

 
2

a
P V b RT

V

 
   

 

The constant “a” is associated with molecular
attractions

2

3

2

3

A vdwN C
a






while b is associated with the excluded volume
occupied by the gas molecules:

b = (2/3)NA
3

where   R1+R2

is the collision diameter.

Lecture #16 begins here

Retardation

We said that the dispersion component of van der
Waals forces arises from the instantaneous dipole
moment which any atom has as a result of the
separation of electron and protons. This
instantaneous dipole, in turn, induces a dipole
moment in a neighboring atom. These two dipoles
interact, leading to a time-average interaction which
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is attractive although the time-average of the
instantaneous dipole (or of the induced dipole) is
zero.

In the Bohr model of the hydrogen atom which
we used to derive the inverse 6th power law, we
treated the instantaneous and induced dipole as if
they were frozen in time -- or at least quasistatic.
Actually the electric field arising from the
instantaneous dipole is fluctating at high frequency ,
so that the time over which it may be considered
constant is very short.

dipole life time << 2

Yet it takes a finite amount of time for the electric
field to propagate to the second atom:

travel time = r/c

If the travel time is not short compared to the dipole
life time, the primary dipole will change before its
effect propagates to the second atom. This results in a
weakening of the van der Waals interaction which is
called the retardation effect:

if r ≪ : Wvdw ∝ r–6

if r ≫ : Wvdw ∝ r–7

where = 2c/

is the wavelength of radiation e mminating from the
fluctuation dipole.
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Van der Waals Forces between
Macroscopic Bodies

Hamaker's Superposition Principle

In 1937, H.C. Hamaker estimated the attraction
between macroscopic bodies (e.g. colloidal particles)
by assuming that the interatomic interactions could
be linearly superimposed:

6
=A

i j ij

C

r
 

To make this sum tractable, let's partition the volume
of these bodies into pieces dV1 and dV2 which are

small enough so that rij is the same for all pairs of

atoms in the two differential volumes. Then we just
multiply the contribution for one pair of atoms by the
number of such pairs in the two differential volumes:

no. of pairs =  


  1 2
1 2

dM
m

dV dV
dn dn

m m

 


where m is the mass of one atom and /m is the no. of
atoms/vol.

1 2

2

1 26

1
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C dV dV
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 
 

For the case of two spheres of radius a:
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where
2

h
s

a
 and

2

=A C
m

 
 
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(104)

is called Hamaker's constant.

The potential has the following asymptotic behavior:

for h<<a:
12

A
A a

h
  

for h>>a:
6

16

9
A

A a

h

 
    

 

Notice that the attractive energy decays like h–1 when
h ≪ a and like h–6 when h ≫ a . The more rapid
decay at large separations has the same exponent as
between two atoms [see (103)]. This change in
exponent is due to geometry only (retardation is not
included in this result).

The results for several other geometries are
summarized in the following table (taken from
Hunter, Foundations, Vol I).

atom
i atom

j

rij

h

1 10
3

 0.01 0.1 1 10 100

1 10
14



1 10
12



1 10
10



1 10
8



1 10
6



1 10
4



0.01

1

100

h

2 a

0.001 0.01 0.1 1 10 100

6

4

2

0

dlog( )

dlog( )s

h

.2 a

slope = –1

slope = –6
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Hamaker’s superposition of atomic or molecular
interactions gives the correct dependence on the
geometry but the proportionality constant
accurately predicted by (104) – even when the two
bodies are separated by vacuum. When another
media separates the bodies, their interaction is more
complicated: the net interaction might even be
repulsive. While repulsive interactions c
predicted in the framework of Hamaker’s
superposition theory, the assumption of pairwise
additivity of intermolecular forces is inherently
incorrect: the interaction involves the simultaneous
interaction between many molecules.

Lifshitz's Continuum Theory

l

1 23
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Instead of treating every atom as a discrete and
independent oscillator, Lifshitz theory treats the three
materials as continua. From Lifshitz theory, the
interaction energy per unit area between two half
spaces, composed of materials 1 and 2, s
thickness l of material 3, is (Hunter, p210)
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This is also the expression we would get from
Hamaker's superposition theory for this geometry.
The main difference in Lifshitz's theory is that

depends on properties of the continuum
than properties of the individual atoms

will also depend on the separation distance

Here are the general expressions which can be
used to evaluate the Hamaker constant:
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This is also the expression we would get from
Hamaker's superposition theory for this geometry.
The main difference in Lifshitz's theory is that A132
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individual atoms — and A132

will also depend on the separation distance l.

Here are the general expressions which can be
used to evaluate the Hamaker constant:
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where c = 3.008 m/s is the speed of light in
vacuum and h = 1.054510–34 J-s is Planck’s
constant divided by 2. The prime (' ) on the sum
denotes that the first term is to be multiplied by 1/2.
The material properties enter this equation through
k(in). This is the dielectric permittivity of the

material (k=1,2,3) except that it has to be evaluated at
a purely imaginary frequency. This probably appears
to be quite artificial, but it is a consequence of
representing real quantities by complex numbers.

Below are results showing how the Hamaker
constant depends on separation distance for two

polystyrene half-spaces, separated by water.

Owing to the complexity of the expressions
above, it’s hard to see how A depends on the
properties of the materials. The expressions simplify

 taken from Prieve & Russel, J. Colloid Interface Sci.125,
1 (1988). A reprint is available on Blackboard.

somewhat if we look at the unretarded limit: in other

words, if we let l → 0:
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Since the 0’s no longer depend on x, we can
evaluate the integral once and for all. When

0 0
13 23  ≪ 1, the following simple result is a good

approximation (max error is 20%):

  0 0
0132 13 23
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The table below summarizes the contributions of
various terms to the sum

Material Properties and Frequency Dependence

The only material property which appears in the
previous section is the dielectric permittivity , which
is the continuum property (of the medium separating
the point charges) which appears in Coulomb’s law
[see (37) on page 20]. This property reflects how the
medium becomes polarized by an electric field. The
analogous property for atoms and molecules is the
polarizability .  and  for the same material are
related by the Clausius Mossoti relation (38).

It turns out that the ability to polarize a material
by applying an electric field depends on the
frequency of that electric field. The largest
polarization occurs at zero frequency. As the
frequency becomes very high, the molecules don’t
have time to respond. The following simple

 Lin(z) is the polylog function with index n. Li3(z) is the

trilog function.
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harmonic oscillator model provides insights into the
frequency dependence.

Harmonic Oscillator Model

The direct proportionality between the dipole
moment of a H atom and the electric field generating
it [see (35) on page 19] is very much analogous to a
linear Hookean spring whose displacement from its
equilibrium position is proportional to the applied
force. Let’s now explore this analogy a little further
to see what it says about the dynamics for an
oscillating force.

Let k = spring const

restoring force = kx

Suppose the electron has mass m. Then the dynamics
of the electron are governed by Newton's law of the
motion:

ma = F

2

2

d x
m qE kx

dt
  (105)

Now let's try to predict the response of the electron if
the electric field oscillates with time:

E(t) = E0cos(t) (106)

(106) into (105) gives:

2

02
cos( )

d x
m kx qE t

dt
  

The general solution of this equation for   o is

given by:

x(t) = Asin(ot) + Bcos(ot) + Ccos(t) (107)

where 0
2 2

( )
( )o

qE
C

m
 

 
(108)

and =o
k

m


is called the natural frequency (a.k.a. resonance
frequency). This is the frequency with which the
electron would oscillate back and forth if there was
no electric field forcing it. This is the frequency of
oscillation which would result if you initially

displaced the spring away from equilibrium and then
just let it go without touching the spring again.

qE = 0x(t)

t

t
o


2



Now let’s return to the response described by (107)
when a sinusoidal force is applied with a frequency
different from the natural one. Let's focus attention
on the particular solution, because the values of the
integration constants A and B will depend on the
initial conditions, whereas the particular solution is
more universal: it is independent of the initial
conditions. Indeed, there exists one set of initial
conditions in which A=B=0.

Special Case: =0 (E = E0)

In this case the particular solution is a constant:

  0 0
2

0
o

qE qE
C

km
 



We can use this as a gauge to judge the amplitude of
the response as a function of frequency. (108) can be
rewritten as

 
 

2

2 20
o

o

C

C

 

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(109)

C

C

b g
b g0



  o

1

Notice that as the frequency increases from zero to
the natural frequency the amplitude of the response
increases to infinity, then reverses sign. However,
above the natural frequency, the amplitude decays to
zero as the frequency becomes much greater than the
natural value.

q

F = qE

x(t)
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Driving a system at it's natural frequency is
clearly special. Let's see if we can understand what is

happening. It turns out that if =o, (107) is not the

general solution. Instead, the general solution is:

x(t) = Asin(ot) + Bcos(ot) + Dtsin(ot) (110)

where D = qE0o/2k

t

x(t)

Notice that this particular solution oscillates, but the
amplitude grows with time.

There is a simple physical explanation. Suppose
the system is already oscillating at its natural
frequency when we start to drive it at the same
frequency. Even without any driving force, the
system would oscillate with constant amplitude.
With a oscillating driving force of the same
frequency, we pull the electron further from the
center with each cycle than it would otherwise move.
In effect, the electron cloud is absorbing energy.
Indeed this natural frequency corresponds to an
absorption peak on a spectrogram. Of course, atoms
and molecules generally possess many electrons and
they also display multiple absorption peaks in their
spectra.

The dipole moment induced by the oscillating
electric field is proportional to the displacement x(t)
of the electron cloud:

p(t) = qx(t) = E(t) (111)

Substituting (107) with A=B=0:

 
2

2 2( - )o

q

m
  

 
(112)

Damped Harmonic Oscillator Model

There is one additional feature we can add to this
simple-harmonic oscillator model to make it more
realistic: friction. Any real mechanical oscillator
would have irreversible losses of energy owing to
viscous drag on the object moving back and forth.
Likewise, an oscillating electon cloud around a
hydrogen atom would radiate energy in all direction:
this radiated energy also represents an irreversible

loss. We can model the effect of such losses by
adding a viscous drag force to (105):

 
 



2

2
springexternal

viscousrestoringinertia force
dragforce

=
d x dx

m qE t kx f
dtdt

 



(113)

where f = 6a

A particular to solution to this refined model for E(t)

= E0 cost is:

x(t) = C() cost + S() sint (114)

where  
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Notice that for f=0, this equation for C() reduces to

(109), which was singular at 0. But when f0

neither of these expressions is singular.

The solid curves in the figure above shows how C

and S depend on  for one particular value of f.
Notice that damping significantly attenuates C
compared to its singular behavior predicted from
(109) (dotted curve).
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1
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1

2

C( )
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


0
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Another very important difference compared to (107)
is the appearance of the sine term in (114). The sum
of a sine and a cosine of the same frequency produces
a cosine wave of a different amplitude which is
shifted in phase (see figure above).

Lecture #17 begins here

All of this type of behavior can be represented
more compactly using complex numbers. For
example, instead of representing the driving force by

a real function

E(t) = E0 exp(it) (115)

The particular solution to (113) becomes:

 
 

 0

2 2
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i

i t i t

re

qE
x t e re

m i f



   
   



(116)

If we took the real parts of (115) and (116) for the
case of no damping (i.e. f = 0), we would obtain
(106) through (108). The real advantage of using the
complex exponential form of the time dependence in
(115) is that 1) differentiation w.r.t. t is easier and 2)
the application of trig identities to calculate the phase
angle is replaced by a conversion of the final
complex number into polar form. Once r and  are
calculated, the real part of (116) is easy:

      Re cosi tx t re r t     

which should be compared to (115). Clearly  is the
phase angle for x(t) relative to E(t).

Recall Euler’s formula for complex exponentials:

cos sinie i    

Complex Polarizability and Permittivity

Using (111) and (116) we can deduce the

complex polarizability

 
 

2

2 2
o

q

m i f
  

   

Using the mathematical principles of analytic
continuation, the definition of this function can be
extended to complex values of its argument . In
particular, notice that for purely imaginary
frequencies (i.e.  = i), the polarizability is a purely
real function which decays monotonically with
frequency:

 
 

2

2 2
o

q
i

m f
  

    

In particular, the singularity at 0 has

disappeared. The plot below compares  and
i) for the undamped case (i.e. f=0).

For this reason, imaginary frequencies offer a
convenient alternative for curve fitting of
experimental results, which will be summarized
below. The Kramers-Kronig relationship of analytic-
continuation theory allows experimental data taken at
real frequencies to be mapped into purely imaginary
frequencies.

For gases (which have 0  1), the Clausius

Mossoti relation (38) gives

The appearance of –if [instead of +if in (116)] in the
denominator of the following expression is not a typo: it

results if exp(+it) in (115) is replaced by exp(–it).
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These expressions for  and () (which display a
single absorption peak at 0) were developed for

a simple atom like H. More generally, atoms and
molecules possess many electrons and they also
display multiple absorption peaks in their spectra. In
addition, condensed media (e.g. liquid water) are not
sufficiently dilute so that this approximation to the
Clausius Mossoti relation applies. Nonetheless, the
permittivity spectra of nearly any material can be fit
to a semi-empirical function having the following
form:

  0 0
2 2 2

0 0

1
j

j j j

gi g h

f f

 
   
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 (117)

where the first term following unity is the
contribution from free electrons (present only in
metals), the second term in the contribution from the
orientation of a permanent dipole (present only for
polar liquids like water) and the remaining terms are
contributions from absorptions peaks j in the IR or

UV. For example, Parsegian & Weiss fit experi-
mental results for water using the permanent-dipole
term, 5 IR peaks and 6 UV peaks (a total of 35 fitting
constants). Their results for (i)/0 is shown as the

’s in the figure below:

where
2

n
nkT

h


 

and h = 1.054510–34 J-s is Planck’s constant divided
by 2. The pluses and circles also show comparable

J. Colloid Interface Sci. 81, 285 (1981).

data for tetradecane and polystyrene. To obtain the
complete spectra requires combining data from
several experiments covering various subsets of the
spectra (microwave, IR, visible or UV). The solid
curves are simpler approximations to the spectra
which are discussed in the next section.

Cauchy Plot

Full characterization of the permittivity spectra
(i) requires a lot of experimental data and effort.
This has generally hindered the use of Lifshitz theory
for van der Waals forces. A glimmer of hope was

offered in the work of Hough & White who
suggested that an adequate representation of the
permittivity spectra can be obtained from a single
undamped (i.e. f=0) absorption peak in the UV. In
other words, (117) can be approximated by

 
2 2

0

1 UV

UV

i g 
 

  

In the absence of absorption, /0 = n2, where n is the

fractive index of the material [recall (37)]. In terms
of purely real frequencies, this corresponds to

 
 2

2 2
0

1 UV

UV

g
n

 
   

  

Note that as long as  is in the visible portion of the
spectra (i.e. vis < UV), this function is well

behaved. This relationship can be rearranged to
obtain

   
2

2 2
2

1 1
UV

n C n
          

 

A plot of n2–1 vs (n2–1)2 is called a Cauchy plot.

The slope equals
2

UV
 while the intercept equals

2
UV

UV

g
C 



Cauchy plots for polystyrene (triangles), tetradecane
(squares) and water (circles) are shown below (the
units on the x-axis is 1030 Hz2):

 Adv. Colloid Interface Sci. 14, 3 (1980).
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Using this simplified characterization of the spectra,
the solid curves of (in) vs n were obtained (see

figure just before last one).

Theory vs. Experiment

Below are direct force measurements between
crossed cylinders of mica (about 1 cm in diameter) in
air.

The dotted line shows the corresponding theory for
nonretarded van der Waals forces. The agreement is
quite good for separations below about 7 nm. At
larger separations, retardation causes the force to
decay more rapidly with further increases in
separation.

At larger separations yet, the forces are much
smaller. The figure below shows the severely

retarded vdW interaction between a 6 m sphere of
polystyrene interacting with a glass microscope slide,
separated by dilute aqueous salt solutions having

various concentrations. The two dashed curves
represent two different approximations (for the
geometry) which use Lifshitz theory to predict the
retarded interaction across half-spaces. Deviations
between theory and experiment for separations below
about 70 nm are due to roughness on both surfaces
(which is not a problem in the previous figure
employing mica which is atomically smooth).

 Bevan & Prieve, Langmuir 15, 7925 (1999).
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Lecture #18 begins here

Lecture #19 begins here

The Electric Double Layer

Whereas van der Waals attraction between
droplets or particles is responsible for the
thermodynamic tendency of a dispersion to be
unstable and flocculate, electrostatic repulsion
between particles of like sign can reduce the rate of
flocculation to near zero and impart kinetic stability
to the colloidal state. Before we consider the
interaction of two charged interfaces, we will first
study a single charge interface and how its charge can
be measured.

Origin of Charge

Nearly all particles, bubbles or drops in water are
charged. We know this because when you apply an
electric field across water containing a particle,
bubble or drop, you can observe it to move. An
example is the red blood cell experiment below.

The surface of the blood cell or other particle
acquires charge by a number of mechanisms:

 adsorption of ions (e.g. SDS and

FeOH+2)
 dissolution of ions from ionic solids

(e.g. AgI)
 dissociation of acidic or basic sites on

interface:

—COOH  —COO– + H+

—NH2 + H+  —NH3
+

Electrostatic Forces in Water vs. Coulomb’s Law

Coulomb’s law (see page 20) states that two point
charges Q1 and Q2, separated by a distance r,

experience an electrostatic force given by

1 2
2

1

4

Q Q
F

r




where the proportionality constant  is called the
electric permittivity which is a property of the
medium separating the charges.

Electrostatic interactions across water are more
complicated than across simple dielectrics like air or
oil because water always contains ions which are also
charged. In response to the charge on the interacting
particles, these ions are rearranged: oppositely
charged ions (called “counterions”) are attracted to
the particle while like ions of the same sign of charge
(called “co-ions”) are repelled.

At equilibrium, a diffuse cloud of counterions
surrounds each charged particle. Since the cloud’s
charge is always of opposite sign to the particle itself,
from a distance, the particle appears to be electrically
neutral (equal numbers of opposite charges in the
diffuse cloud and on the particle). No electrostatic
force is felt between two such particles in water until
they get close enough for their clouds to overlap.
Then the electrostatic repulsion decays exponentially
with r :

F  e-r

where 1/ is the thickness of the charge cloud, also
known as the Debye length.

The resulting severe weakening of the
electrostatic forces is called Debye screening: the
cloud essentially hides the bare charge borne by the
particles until they get very close together.

Gouy-Chapman Model of Double Layer

Let's try to quantify this description. In
particular, we would like to know how thick this
cloud of counterions is. Because of the charge on the
interface, ions feel a electrostatic force. The force
per unit charge is called the electric field:

E(x) = electric field (force/charge)

Like gravity, this vector field is conservative, thus
there must exist a scalar potential (x) such that:

E = – (118)

r
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Like the gravitational potential, the minus sign is
included by convention.  is called the electrostatic
potential.

 [=] volts (energy/charge)

Boltzmann’s Equation:Transport Derivation

The flux of ions will have contributions from
diffusion and electro–migration of ions driven by the
electric field:

i i i i iD c c   N v (119)

where Di is the diffusion coefficient of ion species i,

ci is the number of ions per unit volume and vi is the

velocity of an individual ion. This might be the
velocity of the fluid in cases in which the ions are
entrained in flowing fluid. In stagnant fluid, vi is the

terminal velocity of any ion induced by the electric
field E. Recalling the electric field is force per unit
charge, we can calculate the force on any ion by
multiplying the electric field by the charge on that
ion:

zieE (120)

Stokes law (16) can be used to estimate* the mobility
of that ion (velocity induced per unit applied force):

1 1

6
i

i i

m
f a

 


(121)

where  is the viscosity of the solution ai is the

(apparent) hydrodynamic radius and fi is the friction

coefficient defined in (16). Multiplying the mobility
– given by (121) – by the force – given by (120) –
yields the velocity vi in (119). Also substituting

(118) leads to

i i i i i iD c z em c    N

A combination of (15) and (23) yields

Di = mikT

which is sometimes call Einstein’s equation. Using
this to eliminate mi, the flux becomes

i
i i i i

z e
D c c

kT

 
     

 
N (122)

* We say “estimate” because Stokes law is a continuum
theory which applies when the particle is large compared to
the size of individual water molecules. The ions in the
current problem are not much larger than the water
molecules. Nonetheless, the radius calculated from (121),
which is called the hydrodynamic radius, is usually within
a factor of two of the true radius.

which is called the Nernst-Planck equation.

Let’s now restrict attention to a uniformly
charged surface.

Then any electric field will act purely normal to the
surface and we expect the electrostatic potential and
the ion concentration to depend only on the normal
distance from the charged surface (say x) and we
expect that the ionic concentration will approach the
bulk value ci at some distance from the charged

interface. For this to happen, the electrostatic
potential must tend to some constant (say 0 as
x) or E  0:

as x  : ci  ci,   0 (123)

Continuity of species mass requires

0.i
i

c

t


 


N

For steady state, the partial time derivative is zero.
For diffusion in one direction, this yields

0ixdN

dx
 or Nix = const = 0

If no adsorption or reaction of ions occurs at the wall
(x=0) and the wall is otherwise inpenetrable to ions,
the flux must vanish at the wall; then continuity
requires it to vanish for all x. (122) becomes

0 i i
i i

dc z e d
D c

dx kT dx

 
   

 

After dividing out the Di, we have a separable, first-

order ODE:

   

0

i

i

c x x
i i

ic

dc z e
d

c kT




   

After applying bc (123), we have

 
 

exp
i

i i

z e x
c x c

kT


 
  

 
(124)

which is called Boltzmann’s equation. So if I knew
the (y), I could calculate the concentration profile.
But alas (y) is still unknown. I need another

x

uniformly
charged
interface
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equation. The extra equation is provided by
Coulomb’s law of electrostatics. If I knew the
distribution of charges within a system, I could
calculate the force on them using Columb’s law.

In continuum mechanics, the distribution of
charges is given by the space charge density. Just
like we define the mass per volume to be the density
of the fluid, we can define:

e(x,t) = local charge density (charge/volume)

For a continuum, Coulomb’s law can be written
either as Gauss’s law (in differential form)

e 


E. (125)

or Poisson’s equation:

2 e   


 (126)

where  is the electric permittivity of the medium
between the ions (e.g. the water):

2
10

vacuum 2

Coul
1.113 10

N-m

  

water vacuum78  

The charge density of the fluid arises from the charge
born by each ion. Adding up the charges from each
species i, then substituting Boltzman’s equation,
gives

   

 
exp

e i i
i

i
i i

i

x z ec x

z e x
z ec

kT


 

 
  

 




(127)

Substituting this into (126) yields

 2 exp i
i i

i

z e xe
z c

kT


 
     

  
 (128)

which is called the Poisson-Boltzmann Equation.

 For a derivation of Gauss’s and Poisson’s equations from
Coulomb’s law, see Electrostatics of Continuous Media.pdf
at Blackboard.

 This is the value after 4 has been factored out as in the
representation of Coulomb’s law appearing on page 20.
This is called the “rationalized” value: by factoring out 4
in Coulomb’s law, 4 does not appear in Gauss’s law or
Poisson’s equation.

Special Case #1: small potentials. If the potentials
are small enough, then we can linearize the
exponential:

   
exp 1 ...i iz e x z e x

kT kT

  
    
 

Truncating the series after the second term, (127)
yields

  2

0 2

e i i i i i i
i i i

I

e x
z ec e z c z c

kT
 

 
    

 
 
 

  
 

Now the first sum vanishes because the bulk solution
must be electrically neutral. This leaves

   
22

e
Ie

x x
kT

    (129)

and substituting into (128) yields


2

2
2 22e I

kT



      


(130)

where 21

2
i i

i

I z c  

is called the ionic strength of the bulk solution. In
the case of a symmetric univalent electrolyte (e.g.
NaCl), the ionic strength is also the bulk
concentration of salt. The remaining collection of
constants is lumped to 2 where  is called the Debye
parameter. (130) is called the linearized Poisson-
Boltzmann equation. If  = (x) this equation
reduces to

2
2

2

d

dx


   (131)

Integrating this ODE subject to:

 = 0 at x=0

and  = 0 at x=

yields (x) = 0 exp(–x) (132)

and the linearlized form of Boltzmann’s equation
(124) yields

  01 xze
c x c e

kT


 
 

  
 


The linearized form for the space charge density
(127) is
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   
2 2

0
2 2 x

e
Ie Ie

x x e
kT kT

       (133)

Integrating over the entire solution:

 
2 2

0 00 0

2 2x
e

Ie Ie
x dx e dx

kT kT

        
 

Global electroneutrality requires:

 
0

0

d

e x dx




   


(134)

 = surface charge density (charge/area)

d = charge density of diffuse cloud

Substituting this integral into (134) yields the surface
charge density

 


2

0 0

0

2
e

Ie
x dx

kT





       


Notice that the surface charge density  and the
surface potential 0 have the same sign (since all the

other symbols in the equation are positive). Of
course the electrolyte solution must have a net charge
opposite in sign to that born by the surface itself.

Clearly  is associated with the thickness of the
diffuse cloud. –1 is called the Debye length:

–1 = 10–9 m = 1nm for c = 10–1 M

–1 = 10–6 m = 1m for c = 10–7 M

This provides some idea of the thickness of the
charge cloud.

Special Case #2: symmetric binary electrolyte, which
means there are only two different species of ions and
they have the same magnitude of charge:

z+ = –z– = z

c+ = c– = c

Then Boltzmann's equation can be used to calculate
the charge density:

  exp

exp

exp exp

2 sinh

e
z e

x z ec
kT

z e
z ec

kT

ze ze
zec

kT kT

ze
zec

kT


 


 





 
   

 

 
  

 

     
       

    

 
   

 

(135)

Substituting this into Poisson's equation, we get:

2

2

2
sinh

ecd ze

kTdx

  
    

The argument of the sinh must be dimensionless, so
let’s use this combination to define a new
dimensionless potential

ze

kT


 

We can make the  on the left-hand side
dimensionless by multiplying both sides by ze/kT.
Then we have

2
2

2
sinh

d

dx


   (136)

where
2 2

2
2

2 1
[ ]

m

z e c

kT
  



This is a nonlinear ODE. Despite its innoccuous
appearance, it is much more difficult to solve than
linear equations. However, a particular solution is
possible:

  0tanh tanh
4 4

xx
e

   
   

   
(137)

which is called the Gouy-Chapman model for the
double layer. Of particular interest is relationship
between the surface potential 0 and the surface

charge density . Substituting (135) into (134):

 

  

0

0

2 sinh

e x dx

zec x dx







   

 





counterions

co-ions

x= distance
from interfacediffuse

cloud

io
n

co
n

ce
n

tr
a

tio
n

ci

k-1

0
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Substituting sinh from (136) and –2:

2
2

2
0

2

0

0

0

2

2
x x

kT

ze

x

d
zec dx

dx

d d
zec

dx dx

kT d

ze dx









 





  

  
   

  
 

 
 






Finally we calculate an expression for the wall
derivative from (137):

08 sinh
2

ze
c kT

kT


 
    

 
(138)

which is called the Gouy-Chapman Equation in
honor of the two men who first solved the Poisson-
Boltzmann equation in this 1D case: Gouy (1910)
and Chapman (1913). By contrast, the solution to the
linearized PBE in spherical geometry was reported by
Debye & Huckel in 1923 as part of their general
theory for the activity of strong electrolytes.

For comparison between these two special cases,
we evaluate (132) and (137) for z = 1, y = 0 to 2 and
0 = 1, 2, 4, 7 and 10. The results are shown below:

By making the x-axis logarithmic, we make
predictions of (132) linear, while those of (137) are
not linear, except for the smaller surface potentials
0 or at large x. Notice that for large x, red curves

always become linear with a slope the same as all the
blue curves.

In the limit x, (137) predicts that 0 0 so

that eventually 0 becomes small enough so that

tanh can be linearized. Under these conditions, (137)
predicts

 

0,

0lim 4 tanh
4

app

x

x
x e





 
   

 

(139)

where the pre-exponential factor is the apparent
surface potential which yields the same y-dependence
as in the linearized model of (132).

Note that this apparent surface potential exhibits of
plateau of 4 as the true surface potential increases.

Some Limitations

While the Gouy-Chapman model of the diffuse
part of the double-layer is generally accepted, there
are some difficulties which will be brought out in the
following example.

Assume that the surface charge arises from the
dissociation of acid sites on the surface. A large
charge density on the surface would correspond to
elemental charges placed at a spacing of molecular
dimensions, say

 20.5 nm

e
  = 0.641 Coul/m2

Let’s calculate the surface concentration of
counterions when the bulk concentration is

c
 = 0.1 mol/dm3
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0.1

1

10

Exact PBE
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0,app

0



06-607 75 Spring, 2010

Copyright© 2010 by Dennis C. Prieve PDF generated April 28, 2010

The Gouy-Chapman equation (138) predicts

0 3.546
2

ze

kT




or 0 = 182 mV

To see if this is reasonable, let's now calculate the
maximum concentration of counterions, which occurs
in the solution closest to the charged plane.
Boltzmann’s equation (124)

  2 3.5460c c e 
  = 116 M

which is absurdly high. This concentration would
correspond to an average spacing between ions in
solution of only 0.25nm, which is about half the
hydrated diameter of most ions. Indeed the solubility
of common salts in water is usually limited to about 5
M.

Although we have obtained an absurd answer
from the model in this case, this case is somewhat
extreme in that the surface charge density is very
large, particularly for this high ionic strength. In most
cases, the Gouy-Chapman model of the double-layer
gives reasonable results. Nonetheless, this absurdity
motivated several refinements to the Gouy-Chapman
model.

Lecture #20 begins here

Stern Model

In 1924, O. Stern introduced a correction to the
Gouy-Chapman model of the double layer in an
attempt to avoid the absurdly high counterion
concentration which are sometimes predicted for high
surface charge densities.

Stern reasoned that, when the concentration of
counterions next to the surface becomes large, some
of these counterions will adsorb on the surface to
reduce the surface charge. This layer of adsorbed
counterions is now called the:

Stern layer - layer of (partially dehydrated)
counterions which physically adsorb onto
surface.

Adsorption of counterions tends to reduce the
absolute magnitude of surface charge remaining in
the diffuse part of the double-layer which moderates
the tendency to predict absurdly higher concentra-
tions. Stern's work was published only a few years
after Langmuir's work on adsorption of gas molecules
onto a solid surface. The quantitative models of Stern
and Langmuir are very similar.

Charge Regulation

In the 1920's, research centered on the Hg/water
interface and silver halides in water. Today,
fundamental studies are often done using polymer
latexes, since these particles are nearly perfect
spheres and can be made with very narrow size
distributions. Moreover, you can tailor the surface
chemistry to suit your needs.

Latexes usually acquire their surface charge through
the dissociation of acid or basic sites.

This is a reversible reaction. If the site is a weak acid,
then if [H+] next to the surface is large, then H+ will
be forced to reassociate with the surface, again
reducing the surface charge due to the dissociated
sites. Most weak acids have a pKa which would
prevent the free [H+] from reaching 116 M.

charge regulation - 0 is determined by

dissociation equilibria of surface sites.

This term was coined by Ninham & Parsegian in
1971.

Although there might still be room for
improvement in accounting for the charging
mechanism for a particular type of colloid, there is
general agreement that the Gouy-Chapman model
correctly represents the structure of the diffuse cloud,
given the surface charge density.
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Double-Layer Repulsion

Before discussing the forces acting on charged
surfaces, let's discuss the forces acting on fluid
elements inside the counterion cloud.

Hydrostatic Pressure Inside Double Layer

According to the Gouy-Chapman theory, there is
a voltage drop across the diffuse part of the double
layer. This means that there must be an electric field
inside the double layer. This electric field represents
the force/charge acting on charges inside the
counterion cloud:

  force

charge

d
E x

dx


   (140)

This represents the force acting on ions in the fluid.
Consider a small element of fluid inside the
counterion cloud.

The electrical force acting on this fluid is:

dFe = (x) E(x) dx dy dz (141)

In general the fluid will always bear a charge which
is opposite in sign to that on the wall. So the charge
fluid elements will always be pulled toward the wall.
This is like the gravitational force which acts on
water in a lake or pond which pulls the water toward
the earth. Gravity causes the hydrostatic pressure to
rise as you go deeper into the lake. At equilibrium,
this electrical force is opposed by hydrostatic
pressure rise:

dFp = [p(x) – p(x+dx)] dy dz

or dFp = –(dp/dx) dx dy dz (142)

At mechanical equilibrium, the net force on the fluid
element must vanish:

dFe + dFp = 0

Substituting (141) and (142) and dividing by dxdydz:

 dp
E x

dx
  (143)

Pressure in terms of Ion Concentrations or Potential

Substituting (140) and multiplying through by dx:

dp d  

Next we substitute  from (127) and Boltzmann’s
equation:

 

 
exp

i i
i

i
i i

i

dp d z ec y

z e y
d z ec

kT


  

 
    

 





In preparation for integrating this expression, note
that each term of the sum has the form

a e–b d = –a/b d(e–b)

With this substitution, we have

exp i
i i

i i

z e
dp kT c d kT dc

kT


 
   

 
 

With the help of Boltzmann’s equation (124), the
individual terms of the sum can be seen to be dci,

which was used in the second equation above.
Integrating from x= (where p=p and ci=ci) to

x=x:

   i

i

c xp x

i
ip c

dp kT dc

 

   (144)

and the pressure can be written as:

   i i
i i

p x p kT c x c    
  
  (145)

Thus p – p is sometimes called the osmotic pressure

since the above equation is just van't Hoff's law for
the osmotic pressure for a ideal solution of multiple
ions. Finally, we can relate the pressure to the
electrostatic potential using Boltzmann’s equation
(124):

 
 

exp 1i
i

i

z e x
p x p kT c

kT
 

  
     

  
 (146)
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Pressure in terms of Electric Field

For one-dimensional problems, Gauss’s law (125)
can be written as dE/dx = . Then (143) becomes

 
2

2

dp dE dE
E x

dx dx dx


  

Integrating between x= (where p=p and E=0) to

x=x:

   21
2

0p x p E x    (147)

or  


  
21

2
ahydrostatic Maxwell

constantpressure stress

Total Stress

p x E x p  




(148)

The 2nd term on the left-hand side is the electrical
force per unit area; it has the same units as pressure
and is called the Maxwell stress (the minus sign is
part of the Maxwell stress). By contrast, E
represents the electric force per unit volume. By
adding the Maxwell stress to the hydrostatic pressure,
we obtain the total force per unit area acting normal
to and inward on any x=const surface of our system.

Let’s illustrate how the Maxwell stress can be
used. In deriving (143), we performed a force
balance on a system whose size was differential in
the x-direction. This was required because pressure
is a surface force (force = pressurearea) whereas E
is a body force (force = Evolume). Now that we
have the electric force as a stress (force = areastress)
instead of a body force, we can easily perform force
balances on systems which are not differential in x.
For example, consider the slice of fluid held between
parallel planes are x=x1 and x=x2.

A x-force balance on this slice of fluid requires that
the inward force acting the left face (force acts in +x
direction) must equal the inward force acting on the
right face (force acts in –x direction):

       2 21 1
1 1 2 22 2

p p

p x E x p x E x

 

    
 

(149)

This result is consistent with (148), which states that
the total stress equals a constant (p) independent of

x. Using the Maxwell stress allowed us to write this
force balance on a macroscopic system directly –
without having to integrate (143).

In the text between (141) and (142) we argue that
the pressure force on fluid elements always acts in
the +x direction, regardless of the sign of the surface
charge. This implies that p(x)  p which is apparent

from (147) but not from (145). To see that (145) also
implies p(x)  p, let’s look at a couple of special

cases:

Special Case #1: For a symmetric binary electrolyte,
there are just two terms in this sum: one for the cation
(+) and one for the anion (-). (146) yields:

   

 

1 1

2 cosh 1 0

y yp x p kTc e e

kTc y


 



    

  

where y = ze(x)/kT

Since the cosh function has a minimum value of 1,
this pressure difference is greater than or equal to
zero.

Unfortunately, the potential profile (x) given by
(137) is not so simple that we can visualize the shape
of the pressure profile. Note, however, that the
pressure is always higher inside the counterion cloud
than outside the cloud. To get a simpler expression
whose shape we can visualize, we continue to:

Special Case #2. In the special case in which the
potential is small enough to make the Debye
approximation:

 
 

1
e x

y x
kT


 

then (146) yields:

 1iz y
i

i

p p kT c e   

Expanding the exponential in a Taylors series:

1ip p kT c      21
2

1i iz y z y     
i

 
 

2 21
2

0

i i i i
i i

I

p p kTy z c kTy z c        

 

Now the first sum must vanish owing to
electroneutrality of the bulk solution. The second
sum is just the ionic strength of the solution (I)
leaving:

x1

x2
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p(x) – p∞ = IkT y2

Owing to the exponent of “2” on y (which can be + or
–), we again concluded that p(x)  p as previously

argued. Substituting the definitions of y and :

 
 

   
2

2 22
2

1

2

IkTe
p x p x x

kT
              (150)

where the last step involves:

  
2

2 2 22 1 2
2 2 2

IkTe Ie Ie

kT kTkT



     




Substituting (x) from (132):

  2 2 2
0

1

2
xp x p e 

   

From the "2" in the exponent, we see that the
pressure decays more rapidly to its bulk value than
either potential or ion concentrations.

Lecture #21 begins here

Overlap of Two Double Layers

Suppose we have two flat plates immersed in the
same electrolyte solution and we bring them close
together so that their double layers begin to overlap.

If the plates are identical, they will repel each other.
To calculate the repulsion, consider the forces acting

on the system indicated by dotted lines above. For
convenience, we chose a system consisting of a unit
area of plate surface, with one boundary located at
some arbitrary x located between the two plates and
the second vertical boundary located well outside the
counterion cloud (say at x = –). Besides the surface
forces of pressure and Maxwell stress acting on either
vertical surface, we also have the external force
which we must apply to keep the plates from moving
apart:

dbl repul

area
R

DL
F

P
A

 

A horizontal force balance gives

   21
2DLP p p x E x   

Thus the total stress is independent of x – just as in
(149). However, unlike in (149), that total stress is
not equal to p. To evaluate the double-layer

pressure PDL from the equation above, we can choose

to evaluate the total stress at the most convenient
value of x.

If the two plates bear identical charge densities,
symmetry dictates that the electrostatic potential
profile (x) will experience a minimum at the mid-
plane between the total plates: let’s denote this
location as x = xm. If (x) has a min at x = xm, then

E(x) = –d/dx must vanish at x = xm: E(xm) = 0.

Then the Maxwell stress also vanishes as x = xm,

leaving only the hydrostatic pressure p(xm) = pm.

Our force balance then yields the double-layer
repulsion as

PDL = pm – p∞ (151)

So all we need to do is evaluate the pressure at the
midplane between the two plates.

Although it was derived for a single plate, (145)
also applies to the two-plate problem. To prove this,
we note that (144) can be generalized to vector form
and converted into a contour integral:

i

i
idp dc

p d kT c d   r r. .
 
 

where  is any open contour and dr is a vector
displacement of differential length. We choose an
arbitrary contour  connecting some point far
outside the region between the plates (where the
pressure is p and the concentrations are ci) – then

passes around the top edge of the plate into the region
between the plates – ending up at a second point on
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the mid-plane having pressure pm and concentrations

cim. The result is

   m i m i
i i

p x p kT c x c    
  
 

Substituting Boltzmann’s equation (124) and (151)

exp 1i m
DL i

i

z e
P kT c

kT

  

    
  



Note that if the plates are widely separated (i.e. D 
), the solution at the midplane can be expected to
have the same composition as the bulk (i.e. cim 

ci) and m  0, so that the above equation predicts

PDL  0 as D , which is reasonable.

If D is a few Debye lengths, then m is not yet

zero, but it is small enough so that the exponentials in
(152) can be linearized [as in the right-hand side of
(150)]. This leads to

2 2

0

1
lim

2m
DL mP

 
  

Finally, we can make the quantities in this expression
dimensionless

22

0

2

21 2
lim

2m

m
DL

m

eIe kT
P

kT e kT

e
IkT

kT

 

  
    

    

 
  

 

or
2

0
lim
m

mDL eP

IkT kT 

 
  
 

(152)

Note that IkT is an osmotic pressure (as might be
given by van’t Hoff’s law), so it has the same units as
PDL.

Debye Approximation

What remains is to solve the Poisson-Boltzmann
equation to calculate m. There are two

 A subtle requirement revealed by this proof is that this
contour (between the solution outside and the solution
between the plates) must exist completely inside the

solution. In particular the contour  cannot pass through
the plate because the differential form of (144) does not
apply inside a rigid solid. In effect, the final expression for
pm assumes the electrolyte solution between the plates is in

electrochemical equilibrium with the solution outside. For
this to happen, there must exist a path allowing ions to
diffuse between the two regions.

approximations which yield simple analytical
expressions for the potential profile and the double-
layer force. First, we can once again assume that the
potential is everywhere small enough to linearize the
Poisson-Boltzmann equation

0
kT

e
 

where 0 denotes the surface potential of the inner

surface of either plate. Using the Debye
approximation, the Poisson-Boltzmann equation
becomes (131):

2
2

2

d

dx


  

Integrating this ODE subject to:

 = 0 at x=0

and 0
d

dx


 at x=xm

The particular solution is:

 

0

cosh tanh sinhm
x

x x x


    


In particular, we are interested in the potential at the
mid-plane:

0 sechm mx   

which will then be used in (152). Thus the double-
layer force per unit area between two plates separated
by a distance D (i.e. xm = D/2) is given by

0

2
20

0
lim sech

2
DL eP D

IkT kT 

  
  
 

(153)

where
1 2

sech
cosh u u

u
u e e

 


To see more clearly the functional form of the decay
in the double-layer force with distance, consider the
limit D :

2
lim sech

u uu
u

e e



2 ue

and 2 2lim sech 4 u

u
u e




Then (153) becomes



06-607 80 Spring, 2010

Copyright© 2010 by Dennis C. Prieve PDF generated April 28, 2010

0

2
0

0

lim 4 DDL

D

eP
e

IkT kT



 

 
  

 
(154)

Notice that this is the exponential decay mentioned in
the introduction of this topic on page 70.

Linear Superposition Approx.

When two parallel plates are widely spaced, say
D>>2, the potential profile next to each of them is
essentially that next to an isolated plate.

Thus, using our previous analysis of an single
plate (137), the profile next to the left plate (#1) is:

 1
tanh

4
xze x

e
kT

 
  

  
(155)

where 0tanh
4

ze

kT


 

while the profile next to the right plate (#2) is
obtained by replacing x by (the distance from the
right plate) D–x:

   2
tanh

4
D xze x

e
kT

  
  

  
(156)

Remember that (137) was for a z-z electrolyte. That
restriction still applies here, although there is no need
for the surface potential 0 to be small. By saying

that the potential profile next to either surface is
essentially that for an isolated double layer, we mean
that one surface doesn't “see” the other surface.
When this is true, the total potential profile can be
represented as the sum of the undisturbed profiles:

(x) = 1(x) + 2(x)

In particular, we are interested in the potential at the
midplane:

1 2
2 2

m
D D   

      
   

Since the potential profiles decay exponentially with
distance, if we are more than a Debye length away
from either surface, the potential will be small
enough so that we can linearize the tanh function on
the left-hand sides of (155) and (156) [see (139)]:

   1 1
tanh

4 4
xze x ze x

e
kT kT

  
   

  

or  1
4 xkT

x e
ze

  

Similarly    
2

4 D xkT
x e

ze
   

Thus 2
1 2

4

2 2
DD D kT

e
ze

   
       

   

and our mid-plane potential becomes

28 Dmze
e

kT


 

Substituting this and I = z2c into (152):

2
2lim 64 DmDL

D

zeP
e

c kT kT


 

 
   
 

(157)

If the surface potential 0 is small enough then

2
2 0

4

ze

kT

 
   

 

and our double-layer repulsion becomes

0

2
0

0

lim 4 DDL

D

zeP
e

c kT kT


 
 

 
  

 

which is identical with (154) (recall I = z2c), as it

should be if we haven’t made a mistake.

Double-Layer Repulsion between Spheres:
Derjaguin's Approximation

Calculating the double-layer force between
nonplanar bodies (e.g. two spheres) is generally much
more difficult than for parallel plates because the
Poisson-Boltzmann equation is no longer ordinary.
But when the radius of curvature of the bodies is
much larger than the Debye length, the double layers
are nearly planar in the region of minimum
separation, where most of the interaction arises.
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Recognizing this, Derjaguin suggested that the force
could be estimated by replacing the curved surface
with a series of terraces, which are plane,
disks or annuli (as shown in the figure in the upper
right corner of page). Let these surface elements
have areas A1, A2, A3 … and be separated by

D3 … If PDL(Di) is the double-layer force per unit

area between two infinite parallel plates separated by
Di, then PDL(Di)Ai is the contribution to double

repulsion between the two spheres from the
terrace. Summing the contributions from each
terrace gives the total double-layer force between the
two spheres:

 R DL i i
i

F P D A

In the limit of a large number of very small terraces,
the sum can be replaced by the integral

 R DLF P D dA 
Consider the interaction between an annulus having
radii x and x+dx; let two of these be separated by a
distance D: the area of the annulus is

dA = 2x dx

and the contribution to the force between the spheres
is

dFR = PDL(D) 2x dx

Next we need to relate D to x. Let’s do this for two
spheres having unequal radii a1 and a2.

From the geometry above

D = h + z1 + z2

In turn, the z’s can be related by x using Pathagorus’
thereom:

2
1a  22 2 2

1 1 1x a z x a     2a z z 

leaving
2

1
12

x
z

a


h

81

PDF generated

Recognizing this, Derjaguin suggested that the force
could be estimated by replacing the curved surface

plane, parallel,
as shown in the figure in the upper

Let these surface elements
… and be separated by D1, D2,

layer force per unit

area between two infinite parallel plates separated by
is the contribution to double-layer

repulsion between the two spheres from the ith

terrace. Summing the contributions from each
layer force between the

R DL i iF P D A

e number of very small terraces,

F P D dA (158)

Consider the interaction between an annulus having
; let two of these be separated by a

and the contribution to the force between the spheres

. Let’s do this for two
.

(159)

z’s can be related by x using Pathagorus’


2

1 1 1

neglect

2a z z 

Similarly
2

2
22

x
z

a


Substituting into (159)

1 2

1 1
D h

a a

 
   

 

so
1 2

1 1
dD xdx

a a

 
  
 

and
1

1 2 1 2

1 1
2 2 2dA x dx dD dD

a a a a


 

       
 

(158) becomes

  1 2

1 2

2R DL

h

a a
F h P D dD

a a



 
 

You might expect the upper limit to be the largest
reasonable value of D (= h + a1 + a

exponentially fast with D, PDL vanishes long before

reaches such a large value. Thus we can replace this
“reasonable” upper bound with  (which greatly simplifies
the final result) without incurring any significant error.

D1

D2

D3

A1

A2

A3
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2

2a

2

1 2

1 1

2

x

a a

 
 
 

1 2

1 1
dD xdx

a a

 
 
 

1
1 2

1 2 1 2

2 2 2
a a

dA x dx dD dD
a a a a


 

         

 R DL

h

F h P D dD




You might expect the upper limit to be the largest
a2). Since PDL decays

vanishes long before D

reaches such a large value. Thus we can replace this
(which greatly simplifies

the final result) without incurring any significant error.
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which is called Derjaguin's approximation.

In colloid stability, we are really interested in the
potential energy resulting from the double-layer
interaction between particles. This is the work
required to bring two spheres together:

   R R

h

h F h dh


   

For example, if we use the resulting expression from
the linear superposition aproximation [i.e. (157)], the
interaction between two identical spheres of radius a
is given by

  2
2

64 h
R

ac kT
h e

  


Notice that both the force between two spheres, as
well as the potential energy between two spheres,
scales as the radius a of the spheres. Notice also the
exponential decay with separation distance.

More Rigorous Approach

The 1-D analysis leading to the double-layer force
between parallel plates cannot be directly generalized
to give a rigorous method for calculating double-
layer forces between arbitrary shapes. In this section,
we show the general method, which necessarily
involves vectors and tensors.

When two identical bodies bearing counterion
clouds are brought sufficiently close to one another
that their clouds overlap, then electrostatic repulsion
occurs.

Then I would have to apply a force FDL to keep them

from moving apart. How large is this force?

To answer this question is difficult. Although
(x) was known already in 1913, it took another 25
years before the force was calculated — even in the
simplest geometry of parallel planes. Of course,
today we enjoy the benefits of standing on the
shoulders of giants. From this perspective, the
answer appears simple.

We start by applying a force balance to some
system (indicated by the dotted line in the schematic
above). As our system, let's choose a region which
completely encloses only one of the two bodies.
Recognizing that this system might experience

pressure forces and electrostatic body forces, our
force balance becomes:

FDL + Fe + Fp = 0 (160)

So the problem reduces to finding the electrical and
pressure forces. These can be written as surface or
volume integrals:

Fp = -S pnda (161)

Fe = V EdV (162)

In principle, if (x) is known, we can calculate (x)
from Poisson's equation and E(x) from the gradient.
This purely computational problem can be greatly
simplified if I can convert this volume integral into a
surface integral. Unfortunately, this volume integral
does not have the form needed to apply the
Divergence Theorem — at least, not yet.

Recall the differential form of Gauss's law:


 


E.

Thus the integrand of (162) can be written as:

( )     E E E T. .

where  21
2

E  T EE I

is called the Maxwell stress tensor, EE is a dyadic
product and I is the unit tensor.

Reference - Jackson, pp193f.

So (162) can be rewritten as:

Fe = V .TdV = S n.Tda

where the second equation results from application of
the Divergence Theorem. This result can be added to
(161). Since the limit of integration of the two
integrals is the same, we can just add the integrands:

Fe+Fp = S [n.T - pn]da

Substituting this result into (160):

FDL = -( Fe+Fp) =-S [n.T - pn]da (163)

where S can be any closed surface entirely containing
just one of the two interacting bodies. Although the
integral of a uniform hydrostatic pressure over an
open surface yields a net force, the integral over a
closed surface must vanish:

S npda = 0 (164)

–FDL FDL
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Subtracting (164) from (163):

FDL = S [n(p-p) - n.T] da (165)

Some choices of S are more convenient than other.
For example, if we choose a hemisphere of radius

R, the contribution to the integral from much of
this surface will vanish. To show this, we need to
recognize that far from either particle the electrostatic
potential will decay as:

as R:  Ae-R on S2

This means that the electric field also decays

exponentially E = -:

as R: E  Be-R

The ion concentrations decay to their bulk values
exponentially:

as R: ci - cio = cio [exp(-zi/kT) - 1]

= O()  Ci e-R

and the hydrostatic pressure will decay exponentially:

as R: p-p = kT i (ci - cio)  De-R (166)

The Maxwell stress behaves like E2:

as R: T = O(E2)  Fe-2R (167)

Adding contribution from (166) and (167), the
integrand in (165) behaves like

as R: n(p-p) - n.T  Ge-R

For a particular element of solid angle d, the area

element will tend to become large as R:

da = R2 d

However this is not nearly as fast an increase as the
integrand decreases:

[n(p-p) - n.T] da  G R2e-R d 0 on S2

Now the contribution from S2 vanishes, leaving only

the contribution from the open plane surface.

 
1

DL

S

p p da
   
 F n n T.

where S1 is any infinite plane passing between the

two bodies.

Application to Flat Plates

As an example, let's try to calculate the
electrostatic interaction of two large parallel plates.

Let S1 be a plane parallel to the plates which is

located somewhere in between them. Let x be
measured normal to this surface. If the dimensions of
the plates are sufficiently large compared to the
distance separating them, and the plates are
uniformly charged, then away from the ends of the
plates:

l<<L:  = (x)

Thus Ex = -d/dx

Ey = Ez = 0

If we are computing the force which must be applied
to hold the left plate stationary, then n (which is the
outward normal) will be

n = ex

n.T = (/4)[n.(EE) - (1/2)(n.I)E2]

= (/4)[(n.E)Exex - (1/2)Ex
2ex]

= (/8)Ex
2ex = (/8)(d/dx)2ex

Since this is uniform over the entire surface, the
integral is easy to compute:
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S1 n.T da = (/8)(d/dx)2ex S1 da

= (/8)(d/dx)2exA1

where A1 is the total area of the plate. The other term

is also easy to compute:

S1 n(p-p)da = S1ex(p-p)da = (p-p)exA1

Substituting into our formula for computing the
double-layer force:

FDL = [(p-p) - (/8)(d/dx)2]A1ex

Clearly, there is only an x-component to this force
which is proportional to the area of the plate. The
double-layer force per unit area is

pDL  FDLx/A1 = (p-p) - (/8)(d/dx)2 (168)



06-607 85 Spring, 2010

Copyright© 2010 by Dennis C. Prieve PDF generated April 28, 2010

Lecture #22 begins here

Flocculation

There is an irresistible tendency for flocculation to
occur in most lyophobic systems:

interfacial tension -- a contribution to the free
energy of a two-phase system that is
proportional to the interfacial area

R1 R1 R2+

Since interfacial tensions are always positive, the free
energy of any such system can be reduced by
reducing the area. For example, consider two
spherical oil droplets which coalesce together to form
one larger sphere:

V2 = 2V1 
1 32

1

2
R

R
 = 1.26

then 1 32

1

2
2

A

A
 = 0.79

Thus there is a 21% reduction in area as a result of
coalescence of two drops. This represents a
thermodynamic tendency for flocculation to occur.

Rapid Brownian Flocculation

In a stagnant fluid, particles undergo Brownian
motion, which from time to time results in a collision
between two particles. Let's suppose that every
collision between two singlets results in the
formation of a doublet -- i.e. the particles stick
together for some reason. Then the rate of
flocculation is simply the rate of Brownian collisions.

Reference: Kruyt, pp278-82

Smoluchowski (1916) calculated this rate by
computing the rate of diffusion of particles to a
sphere fixed at the center of the coordinate system.
In spherical coordinates, the radial flux is given by
Fick's law as:

Jr = particles/m2-s =
dc

D
dr

 (169)

At steady state, there can be no accumulation of
particles in any spherical shell, so the rate of
transport (flux times area) must be the same for all
spherical shells:

 24 0r
d

r J
dr

  (170)

Substituting Fick's law for the radial flux:

2 0
d dc

r
dr dr

 
 

 

which can be easily integrated to obtain the general
solution for the concentration profile. We will need
two boundary conditions to obtain the particular
solution to or this second-order ordinary differential
equation.

as r: c c (171)

at r=2a: c = 0 (172)

This second boundary condition can be rationalized
as follows. By c we mean the concentration of
particles free to undergo B.M. c=0 at r=2a because
particles at that position stick to the central particle
and are no longer free to undergo B.M.

Integrating   2
1

a
c r c

r

 

  
 

The rate of collisions with the stationary target sphere
is

–rJr = Dac (173)

If the target sphere is allowed to also undergo B.M.
with the same diffusion coefficient, what will be the

collision rate? It turns out to be twice as large.

To show this, consider two Brownian particles which
at time zero are located at the origin. At a later time t
we know their mean square locations from Einstein's
equation:

 See Exam #1, Prob. 1d for 06-712 during Spring 2010.
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<x1
2> = 2D1t

<x2
2> = 2D2t

Thus we can also compute how the relative distance
between the two changes with time:

<(x2-x1)2> = <x2
2-2x2x1+x1

2>

= <x2
2> - 2<x2x1> + <x1

2>

But <x2x1>=0 because either particle is equally

likely to be on either side of the origin. In other
words, the probability of x2x1 being positive or

negative is the same so that the average is zero. This
leaves:

<(x2-x1)2> = <x2
2> + <x1

2> = 2(D1+D2)t

For identical particles D1=D2 and the relative

Brownian motion between two moving particles is
twice as large as that when one is held stationary
(D1=0).

Generalizing (1), we replace D by 2D. For a
single target particle:

no. of collisions/time = 16Dac (174)

To get the rate of collision per unit volume, we
multiply by the number of targets per unit volume,
c:

no. collision/vol-time = Dac
2 = b11 (175)

This determines the rate at which singlets combine to
form doublets. Not surprisingly then, flocculation is
a second-order reaction.

The resulting doublet may combine with a singlet or
another doublet to form a triplet or quadruplet, which
might then further combine to form larger aggregates.
To describe the kinetics of aggregation we have to be
able to predict the of collisions between each type of
aggregate and any other.

Smoluchowski computed the rate of these
collisions by treating any size aggregate as a sphere.
To compute the rate of collisions between spheres of
radii ai and aj, we start with (175) and replace:

2a ai+aj

2D Di+Dj

c
cicj

Thus (175) becomes:

bij = 4 (Di+Dj)(ai+aj)cicj

The the diffusion coefficient of any size sphere is
inversely proportional to its radius. Bigger spheres
have less mobility and a smaller diffusion coefficient:

6
i i

i

kT
D m kT

a
 



which is called the Stokes-Einstein equation.
Substituting it into the expression for the collision
rate, we have:

 2 1 1

3
ij i j i j

i j

kT
b a a c c

a a

 
   
   

(176)

Kinetics of Flocculation

With the rate of each type of encounter known,
we can now try to predict how the concentration of
any type of aggregate will evolve with time. A mass
balance on any species gives:

{rate of accum} = {rate of formation} – {rate of
depletion}

Let's take a particular species, say quintuplets (k=5).
Particles of size 5 are formed by the combination of
1+4 or 2+3, where particles of size 5 are depleted by
combining with particles of any size:

5dc

dt
= b14 + b23 - (b51+b52+...+b5)

The corresponding mass balance for species of any
size is:

for k2:
1

1
2

1 1

i k
k

ij ik
i i

j k i

dc
b b

dt

  

 
 

   (177)

The factor of 1/2 in front of the sum is to avoid
double counting the same type of collision (for
example, i,j = 1,k-1 and k-1,1).
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Now (176) can be substituted into (177) to obtain a
set of O.D.E. is the concentrations. One additional
approximation by Smoluchowski allowed an
analytical solution to this infinite set:

 1 1
4i j

i j

a a
a a

 
   
 
 

(178)

Note that this is true when i=j. It's also
approximately true if ai and aj are approximately the

same. Thus (176) becomes:

8

3
ij i j

kT
b c c


(179)

Substituting (179) into (177):

1
1
2

1 1

8

3

i k
k

i j k i
i i

j k i

dc kT
c c c c

dt

  

 
 

 
  

  
  

  

 

Now this set of O.D.E.'s can be solved analytically
once we have specified some initial conditions. Let's
suppose we start with all singlets of some known
concentration:

for k=1: c1(0) = co

for k=2,3,.. ck(0) = 0

The particular solution to this initial-value problem is
given by:

 
 

 

1

01
1

k

k k

t

c t c
t











where  is called the flocculation time:

11
3

0 0

s2 10
3 cm

4 ckTc




  

when co is the initial number of singlets per unit

volume. The number was computed the viscosity of
water at room temperature.

The total concentration of particles, irrespective of
their size can also be easily computed:

0

1 1
k

k

c
c c

t





 




 (180)

This time dependence is characteristic of a second-
order reaction.  represents the half life of the
particles concentration: the total particle
concentration, c, is reduce by flocculation to half its

initial value at t=.

EXAMPLE: compute the flocculation time for 1 M
solution of AgI which precipitates to form 30 nm
particles.

Solution: co = 4x1014 particles/cm3

 = 0.5 ms

Thus flocculation would occur in the blink of an eye.
To study flocculation, we have to slow it down, say
by starting with a much more dilute sol.

Experimental Verification

Since the availability of monodisperse latexes in
the 1950's, there have been many experimental
measurements of flocculation rates. One such study
is that of Swift & Friedlander [J. Colloid Sci. 19, 621
(1964)], whose used a Coulter counter to measure the
concentration of flocs of various sizes at different
times. Some are their results are plotted below.

Eq. (180) can be linearized by taking the reciprocal
of both sides:

  0 0

1 1 1
t

c cc t
 



0 1 2 3
0

0.2

0.4

0.6

0.8

1

c

c0

c k

c
1

c
2

c
3

t


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The slope of this plot should be

3
12

11
0 3

1 1 cm
5 10

s s2 10
cm

c
  

 

which should be independent of particle
concentration or size. The experimentally
determined slope is low by a factor of two. This can
be attributed to the following effects which were
neglected by Smoluchowski:

 van der Waals attraction is not completely
negligible

 D=D(r), for r<3a, D<D() owing to the
decreased mobility of either particle when it
approaches a solid surface.

Lecture #23 begins here

Considering van der Waals attraction would increase
the rate, since migration in the force field is a second
transport mechanism which acts in parallel with
diffusion. The second effect would decrease the rate
since the diffusion coefficient is reduced. The ratio
of the actual rate of flocculation to the Smoluchowski
rate is called the stability ratio.

Smoluchowski's rate

actual rate
W  (181)

which is usually greater than unity. Below are some
more recent data obtained at CMU by Bob Ofoli
(PhD Thesis, 1994) using small-angle light
scattering.

This shows quite good agreement between
experiment and theory for rapid flocculation, which
has been reported by others. The needed refinements
to the theory will now be described.

Slow Brownian Flocculation

Repulsive forces between the particles can
significantly slow the rate of flocculation. This can
be seen in the sketch below showing experimental
data taken by Bob Ofoli on polystyrene latex

particles having a diameter of 0.154 m. At low salt
concentrations, the stability ratio can easily reach
1000: meaning the rate is only 0.1% of the rate
predicted by Smoluchowski’s equation. It has long
be recognized that electrostatic repulsion between
like charged particles can reduce the rate of
flocculation to practically zero.

Forces of interaction between particles affect the
rate by causing migration in the force field. Fuchs
(1934) modified Smoluchowski’s analysis to include
migration in the force field. (169) becomes:


migration

diffusion

r
dc dc D d

J D mFc D c
dr dr kT dr

dc c d
D

dr kT dr

 
       

 

 
   

 



where we have substituted the Nernst-Einstein
equation for m and we have assumed a conservative

force field, so that F = -d/dr. Hydrodynamic
interactions are taken into account differently from
van der Waals attraction or double-layer repulsion.
The latter forces do not depend on the speed with
which the particle is moving through the viscous
fluid, whereas hydrodynamic drag is proportional to
speed. Spielman (1970) showed that the
hydrodynamic forces can be accounted for by
reducing the diffusion coefficient (or mobility) by a
factor which depends on the separation distance
between the two spheres: in effect, replacing D (a
constant) by D(r):
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 r
ddc c

J D r
dr kT dr

 
   

 
(182)

Substituting (182) into (170) and integrating, subject
to boundary conditions (171) and (172), leads
eventually to the following expression for the
stability ratio defined by (181):

 
 

  2
2

2
r kT

a

e
W aD dr

D r r

 

   (183)

If we substitute (r) = 0 and D(r) = D(), this
reduces to W = 1, which means the rate of
flocculation is just what Smoluchowski calculated.

Because D(r)  D(), hydrodynamic interactions

causes W  1, which is what we found
experimentally.

Including double-layer repulsion in the theory can
result in much larger stability ratios owing to
significantly positive values of (r). The plot below
shows predictions of van der Waals attraction (blue
curve) and the total of van der Waals and double-
layer repulsion for several different concentration of
a simple 1-1 salt.

In particular, notice that each curve has a maximum
and that maximum is getting smaller with ionic
strength.

Below are corresponding predictions of the
stability ratios made by Ofoli for slow flocculation:

Although qualitative features of the experimental
data are predicted (the existence of a CCC, the linear
relationship between logW and logC), the quantita-
tive agreement between theory and experiment leaves
a lot to be desired.

When the potential energy profile has a maximum
max >> kT, then the rate is exquisitely sensitive to

max, which represents an energy barrier that the

particles must overcome in order to stick to one
another. In this limit, a Taylor-series approximation
to (r) around r = rmax yields an approximation to

(183):

 
   

 max

2
max maxmax

2 2
exp

rDa kT
W

D r r kTr

 




where rmax is the value of r at which (r) is

maximum and " = d2/dr2. This exponential
sensitivity to the height of the barrier which makes
this prediction very sensitive to everything. At least
two different sources of error exist which might
explain the departure between theory and experiment
above for slow flocculation:

 surface roughness of particles
 polydispersity of charge on particles

Rapid Flocculation by Shear

Besides diffusion, another familiar mechanism for
transport is convection. Suppose now, that the
particles are completely non-Brownian, but that the
fluid in which the particles are dispersed moves. Of
course, if the velocity of the fluid were uniform
everywhere, the relative position of the particles
would remain underchanged -- no flocculation would

 adapted from a similar expression derived in AIChE J.,
vol. 276, p274 (1976).
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occur. Thus it is necessary for the fluid velocity to
vary from point to point so that the particles can
move relative to one another. The first analysis of
this problem was again done by Smoluchowski
(1916):

Reference: Kruyt, pp289-92.

Assumptions:

 identical non-Brownian spheres of radius a,
uniformly distributed throughout fluid

 fluid undergoes simple linear shear flow

 ignore hydrodynamic interactions (particles move
with the same velocity as “undisturbed” fluid at
their center)

As before, let's focus our attention on one target
sphere. If we choose our reference frame to move
along with the particle, then it appears stationary,
particles above move to the right, while particles
below move to the left. The velocity of these
particles relative our stationary target is:

vz = y (184)

As a result of these different speeds, particles can
overtake one another and collisions result. Indeed,
you can see from the figure below that any particle
whose projection onto the y-z plane lies within one
collision diameter of the center of our target, will
eventually collide with our target.

In other words, if particle center is located at:

(x,y,z) and yz<0

Then a collision with target will eventually occur if

(x2+y2)1/2  r  2a

The rate of collisions with the target is then the net
rate they are moving through this tube of radius 2a
(since all particles in this tube eventually collide with
target). Of course, the velocity of the particles varies
with y. To get rate we must integrate the particle flux
over the cross section of the tube:

 
2

particles
flux [ ]

cm -s
zv y c   

where c is the number of particles per unit volume
(which is assumed to be independent of position).

 
disk

particles
rate [ ]

s
zv y c dy dx  (185)

The absolute value signs were added because motion
in either direction results in a “positive” collision.
Noting that c=const and substituting (184), (185)
becomes:

collisions/s = (64/3)a3c (186)

This is the result for a single target. Multiplying by
the number of targets per unit volume gives the
collision frequency per unit volume:

collisions/cm3-s = (64/3)a3c2

Of course, this is the collision frequency between
identical particles. To complete the analysis
Smoluchowski, generalizes this using:

(2a)3  (ai+aj)
3

c2  cicj

to obtain the collision frequency between spherical
flocs of arbitrary size:

z z

y y

"side view" "end view"

2a
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bij = (8/3)(ai+aj)
3cicj (187)

Using this collision frequency, we can re-analyze the
flocculation kinetics according the species mass
balance we already developed, namely (177):

1
1
2

1 1

i k
k

ij ik
i i

j k i

dc
b b

dt

  

 
 

  

To obtain an analytical solution to this difficult
problem, Smoluchowski made an assumption which
is analogous to (178), which is valid when ai is not

too much different from aj. In this case,

Smoluchowski assumed:

   3 38 16 4
3 3

1 1 12 i

ik k i k i k i i
i i ia

b c a a c c a c
  


  



       


which is also valid when ak is not too much different

from ai. A similar approximation can be made for

the other sum in (177). Ultimately, the analysis leads
to

4dc
c

dt 
  

where c = ck is the total particle concentration.

Because the total volume of particles does not change
upon flocculation,  is a constant and we see that
shear-induced flocculation is a first-order process,
unlike Brownian flocculation. Integration yields:

c(t) = coexp(-t/)

where  = /4

is now the flocculation time.*

Brownian versus Shear-Induced Flocculation

Which is faster: Brownian or shear-induced
flocculation? To answer this question, let's compare
the collision frequencies for the encounter of
identical particles. This is at least applicable during

* Homework: Repeat the analysis for extensional flow.

Homework: Replacing  by dvz/dr, determine the

rate of flocculation in a long tube in which Poiseuille
flow occurs. Show that the extent of flocculation in
the outlet of the tube is independent of flowrate.

the initial phase when the sol consists of primarily
singlets. Dividing (186) by (174):

364 32
3 8Shear 4

Brownian 16 3

a c aa

Dac D kT

  
  

 

where we have substituting the Stokes-Einstein
equation for D. Clearly shear is more important for
larger particles and high shear rates, but is
independent of particle concentration. In his review
in Kruyt's book, Overbeek writes

Everyone, who has ever carried out a
coagulation, has seen that coagulation is
promoted by agitation of the sol. The
agitation, which seems to have little or no
influence in the first stages of coagulation, is
very effective when the aggregation has
already proceeded for some time.

Why?

Experimental Confirmation of Shear-Induced

Rates

Swift & Friedlander also measured flocculation
rates under conditions in which shear-induced
flocculation dominates. A Couette apparatus was
used to produce nearly uniform shear. Samples were
obtained every few minutes and analyzed with a
Coulter counter. The results shown at right confirm
that the kinetics are first-order with respect to the
particle concentration and that the rate constant is
proportional to the shear rate.

Origin on Charge

Nearly all solids in contact with a polar solvent bear a
charge. The clearest evidence for this is
electrophoretic migration of solid particles in an
electric field.

Solids can acquire charge by any of several
mechanisms:
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 adsorption of ions (surfactants like SDS,
hydrolysis products of heavy metal cations like

FeOH+2

 dissolution of ions from ionic solids, like AgI

For example, the solubility product for AgI is

Ksp = [Ag+][I-] = 7.5x10-17M2

If [Ag+] = [I-] = spK , then the surface will be

negatively charged because the smaller and more

mobile Ag+ has a greater tendency to leave the lattice

for the solution than I-. To have no charge on the
surface we need to have a greater concentration of
silver ions:

[Ag+][I-] = (3.0x10-6M)(2.5x10-11M) = Ksp

[Ag+] < 3.0x10-6M  negative charge on solid

[Ag+] > 3.0x10-6M  positive charge on solid

 dissociation of acid or basic sites. This is
particularly common for biological surfaces which
are usually composed of proteins containing carboxyl
and amines

Most minerals also acquire their surface charge in
this manner.

Of course, you would expect that changing the
concentration of a potential determining ion — like

Ag+ in the case of AgI sols or H+ in the case of
biological surfaces — to have a profound effect
because the surface potential and presumably the
surface charge is changed. Indeed, as you approach
the concentration of a potential determining ion for
which the charge vanishes, the sol becomes unstable
and flocculates. This concentration is called:

point of zero charge — concentration of a potential-
determining ion at which surface charge vanishes

This concentration is often expressed like pH --
minus the base-10 logarithm of the concentration in

moles per liter. For example, a AgI sol has the
following PZC:

PZC of AgI:[Ag+]=3.0x10-6M or pAg=5.5

At least as early as 1903, Freundlich observed that
when other salts are added to an electrostatically
stabilized dispersion of particles, they too can cause
flocculation. Salts which do not contain potential-
determining ions are called

indifferent electrolyte -- a salt, acid or base whose
ions are not “potential determining”

Unlike potential determining ions, which destabilize
only near a particular concentration, indifferent
electrolyte cause rapid flocculation for all
concentrations above some minimum value called the

critical coagulation concentration (ccc) -- minimum
concentration of “indifferent” electrolyte required to
destabilize a dispersion

The ccc was measured for a various indifferent
electrolytes and was found to be about the same for
all monovalent salts (KCl, NaCl, etc.). However,
divalent salts have a much lower ccc, while trivalent
salt have a even lower ccc:

ccc = 100:1.6:0.05 for z = 1:2:3

This dependence on the valence of the salt (more
specifically, on the charge number of the counterions,
for unsymmetric electrolytes) is called the:

Shulze-Hardy Rule -- the ccc depends strongly on
the charge number of the counterion

This was observed before 1900. It was generally
assumed that even indifferent electrolytes adsorbed
on the surface and reduced the charge, thereby
destabilizing the sol. Then makes sense in that the
higher the valance, the less electrolyte is needed to
neutralize the surface charge. This was called the
Freundlich adsorption theory after H. Freundlich
who suggested it in 1903.

if ions adsorbed: ccc  z-1

observed: ccc  z-6

We now know that the ccc is associated with Debye
screening of the electrostatic interactions between
particles (due to the compression of the double layer
by added salt) rather than changes in the charge on
the surfaces. By the end of the 1930's, Freundlich's
adsorption theory was abandoned by colloid
scientists in favor of Debye screening.

During the next few weeks, we are going to delve
into the theory to electrostatic interactions across an
aqueous electrolyte solution, which turns out to be
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very different from the interactions across vacuum or
a simple dielectric material, owing to the presence of
mobile charges in the water. But first, we need to
review some basic ideas from electrostatics.
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Electrokinetic Phenomena

So far in our discussion of diffuse double-layers,
there has been no fluid motion. But since the fluid
inside the diffuse cloud is charged, we can exert a
force on it by applying an electric field tangent to the
surface.

d fF

d sF

Consider again the distribution of ions near a charged
interface. The solution is not electrically neutral. So
if an electric field is applied tangent to the surface,
the fluid will experience an electrostatic body force:

dFf = (dq)E = (edV)E

where dq is the net charge on a fluid element having
volume dV. The solid is oppositely charged, so it
feels a force in the opposite direction. Consequently,
at steady state, we can expect the fluid to move
relative to the solid, or vice versa.

At least two phenomena are associated with with the
relative motion generated by this externally applied
electrostatic force:

electrophoresis - migration of charged particles
through an otherwise quiescent fluid

electro-osmosis - flow of fluid through a porous solid
bearing a surface charge

In both cases, relative motion between the fluid and
the solid arises when an electric field is applied
externally. Conversely, forcing a fluid to move
tangent to a charged interface generates an electric
field:

sedimentation potential - the electrical potential
(gradient) which arises during sedimentation of
charged particles in a gravitational field

streaming potential - the electrical potential
(gradient) which arises during flow of fluid
through a porous solid which bears a surface
charge

These four phenomena depend on the magnitude of
the surface charge. Measurements of these induced
velocities or induced potentials are the most

commonly used techniques for determination of
surface charge.

Lecture #24 begins here

Hydrostatic Equilibrium

Since the fluid inside the diffuse cloud is charged,
any electric field in the fluid will exert a force on the
fluid elements. This body force needs to be included
in the Navier-Stokes equations:

electrostatic body force/volume = eE

which is analogous to the body force exerted by
gravity:

gravitational body force/volume = g

Including electrostatics, but neglecting gravity, the
Navier-Stokes equation becomes:

Dv/Dt = 2v – p + eE (188)

In the Gouy-Chapman model described in a previous
section, the fluid is stagnant. At hydrostatic
equilibrium, any electric field applied to a charged
fluid element will lead to a pressure gradient:

v = 0: p = eE (189)

This is just a more general vector representation of
(143). It is also a special case of (188) the Navier-
Stokes equation with electrostatic body forces.

Smoluchowski's Analysis (ca. 1918)

E

Consider an infinite plate (the y=0 plane in the
figure above) in contact with an electrolyte solution.
Suppose the plate bears a uniform surface charge
density and we somehow externally apply a uniform
electric field Ex tangent to the surface in the +x

direction. Let's try to find the velocity profile v
induced by this electric field.

continuity: .v = 0

NSE: Dv/Dt = 2v – p + eE (190)

First, let’s distill our description of hydrostatic
equilibrium.
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Case #1: hydrostatic equilibrium (i.e. Ex = 0 and

v = 0)

continuity: 0 = 0

NSEx: 0
eqp

x


 


so peq = peq(y) (191)

NSEy: 0
eq

eq eq
e y

dp
E

dy
    (192)

Finally Gauss’s law gives:

eq eq
y e

dE

dy





(193)

which (when written in terms of the electrostatic
potential) becomes Poisson’s equation

2

2

eqeq
ed

dy


 


(194)

we have added a superscript “eq” to all variables
above to remind us that these apply for hydrostatic
equilibrium.

Boundary conditions can be imposed at the wall

at y=0: eq = 0

and far away (outside the counterion cloud)

as y: eq  0 and peq = p

Case #2: Ex  0

We expect the fluid to move in the direction of
the applied electrostatic force so vx must be nonzero.

No slip at the wall yields the boundary condition:

at y=0: vx = vy = vz = 0

The simplest solution to this problem which has this
property is:

vx = vx(y), vy = vz = 0

Of course, we must allow vx to vary with y so we can

meet the no-slip condition at the surface. Since vx is

independent of x, this solution automatically satisfies
continuity.

continuity: 0xv

x


  


v.

 The surface potential 0 is related to the surface charge

density . For example see (138).

Denote by a prefix  any perturbation in the electric
field, electrostatic potential, space charge density or
pressure which is caused by externally applying the
electric field Ex:

eqp p p  

eq
e e e    

eq eq
y y x xE E    E E E e e

Recalling that each of the components of the electric
field as well as the total electric field are related to
the corresponding electrostatic potential by E = –,
we can now deduce the functional form for the
electrostatic potential:

     , eqx y y x    

An important implication of this is that Ex is

independent of y: any y-dependence in  would lead
to a y-component of E. So if E is purely in the x-
direction, then Ex must also be independent of y.

Any flow tangent to the plate is not expected to
perturb the ion concentration profiles because
tangential flow just replaces fluid having a particular
concentration with fresh fluid having the same

composition (also v.ci = 0 since v and ci are

orthogonal). This suggests that the charge density
profile is not perturbed by flow caused either by an
externally applied electric field (tangent to plate) or
by an externally applied pressure gradient:

 e = e
eq or e = 0 (195)

Gauss’s law requires

The cancellation of two terms above results from
substituting (193). Then we get

Gauss: 0xd E

dx


 or Ex = const w.r.t. x,y (196)

The Navier-Stokes equations yield



2

2
0

0

0
eq

x eq
x x

d vp p
E E

x x dy

 
       

 

4
e

eq
ydE

dy


  


E.

4x eq
e

d E

dx

 
  


0
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but two of these terms vanish according to (191) and
(195). Dropping these terms leaves

NSEx:
2

2
x eq

e x
d v p

E
xdy


   



The y-component of NSE requires

0
eqdp

dy
  eq eq

e y
p

E
y


  


Two of these terms cancel according to (192), leaving

NSEy: 0
p

y





or  p p x  

Knowing that p is independent of y allows us to
integrate NSEx:



2

2

( )
( )

0

const

0

x eq
x

f x
g y

L

d v d p
E

dxdy

p p

L


    







(197)

By applying a pressure gradient along the surface, we
could “pump” the fluid past the solid, but this is not
the problem we want to address. Thus we set the
pressure gradient to zero (p0 = pL) so there is no

pressure-driven flow.

Substituting (194) and p0 = pL into (197):

2 2

2 2

eq
x

x
d v d

E
dy dy


   

Boundary conditions include

at x=0: vx = 0 and 0
eq  

as x : dvx/dy  0 or vx  vx,

deq/dy  0 or eq 0

The b.c.’s on the eq are the same as have been used
before [see before (132)]. The first hydrodynamic
b.c. (vx = 0) is just “no-slip”. The second condition

says there is no shear force being applied to the fluid
outside the double layer. Shear stress (dvx/dy)

might result from pressure driving flow or from
sliding motion between two parallel plates. Here the
only driving force for flow is the electrostatic body
force eE which vanishes as x . Since Ex=const,

this can easily be integrated to

     0eq eq
x xv y y E

     
 

Of particular interest is the change in velocity over
the diffuse cloud:

     0eq eq
x x xv E E

          
  

where   eq(0) – eq() (198)

is called the “zeta potential”.

zeta potential - the electrostatic potential drop across
the diffuse part of the double layer.

 is an important property of charged surfaces
which can be inferred from electrokinetic
experiments. It is related to the charge density on the
interface: one such relationship is (138).

Substituting eq(y) from (132),

   1 y
x xv y e E

   


we obtain a velocity profile like that shown below.

Ex

1

In the analysis above, we took the solid wall to be
stationary [i.e. we took vx(0) = 0]. We can easily

generalize our result to a moving wall [i.e. let vx(0) =

vx,f ]. Then the above equation can be rewritten as

, ,x s x f xv v E


  


(199)

which is called Smoluchowski’s equation.

Electro-Osmosis in Cylindrical Pores

Consider a long circular capillary tube of radius a.
If it is filled with an electrolyte solution and becomes
charged, then applying a voltage across the length of
the tube will give rise to electro-osmosis through the
tube.
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L>>a

a

k
-1
<<a

r z

If the capillary radius a is much larger than the
Debye length –1, then the velocity profile is
essentially plug flow except inside the double layer
where the velocity suddenly drops to zero at the
stationary solid surface

vs = 0

  ,x x f xv r v E


  


for all r outside the double layer. Here we have
applied (199), but dropped the prefix "" since we
have no further need to distinguish between the
equilibrium and the applied fields.

The volumetric flowrate through the tube is just
this velocity times the cross-sectional area:

a>>1: Q = –a2(/)Ex

So a measurement of the flowrate for a known
applied electric field allows us to determine the zeta
potential.

Example: A typical value of the  potential for
aqueous solutions is about 50mV. Plugging in the
values of the other parameters

/ = 3.5 m/s per V/cm

Electrophoresis of Large Spheres

Consider a rigid sphere, constructed of some
insulating material, immersed in a quiescent
electrolyte solution in which we have applied a
uniform electric field E. As a result of any charge

on the surface of the sphere, the sphere will be
propelled at some terminal velocity U which will

turn out to be parallel to E. We now seek that

velocity for the case in which the counterion cloud is
very thin compared to sphere’s radius a; i.e. a >> 1.

While the externally applied electric field E is

uniform, the presence of the dielectric sphere
perturbs that uniformity. We will first try to solve for
the disturbance to the electric field. Changes in the
electric field are determined by Gauss’s equation or
Poisson’s equation (126).

If the charge layer is very thin, the fluid is
electrically neutral nearly everywhere: thus the
charge density e vanishes and Poisson’s equation

(126) reduces to Laplace’s equation:

2 = 0 (200)

at r=a: r = 0

as r:  –E rcos

The b.c. at r=a assumes that the sphere is an insulator
and that no electrical current can be conducted into it.
The b.c. as r requires that the electric field E tend
to the uniform value E externally applied. This

problem is closely related to potential flow around a
sphere. The solution to (200) and its boundary
conditions is:

 
3

1
2 2

, cos
R

r E r
r


 

      
 

In particular, we will need the tangential component
of the electric field at the surface of the sphere:

at r = a: E = –(1/r)/ = –(3/2) Esin (201)

Smoluchowski’s equation (199) applies inside the
counterion cloud next to a charged sphere. We will
solve the hydrodynamic problem in a moving
reference frame (so the sphere appears stationary)
Taking vx,s = 0 and replacing vx,f by v and Ex by

E, (199) yields:

at r=a+-1: v E 


 


(202)
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in a reference frame in which the sphere is stationary.
This is the basis for solving the more complex
problem of electrophoresis of a large sphere. “r=a”
has been replaced by “r=a+-1” to remind us that this
is v evaluated just outside the very thin counterion

cloud (since v evaluated at r=a vanishes owing to no

slip).

Now let's turn to the fluid flow problem. Outside
of the counterion cloud, the fluid is electrically
neutral and there are no electrostatic body forces
acting on the fluid, even though there might be an
electric field:

for r>a+-1: 2v = p (203)

.v = 0 (204)

Let's choose a reference frame which moves with the
center of the particle. If we define U as the

electrophoretic velocity of the sphere in the
laboratory reference frame, then the appropriate
boundary conditions (in the moving reference frame
of the sphere) are:

as r : v = –U (205)

at r = a: v = 0

which requires no slip of the fluid immediately in
contact with the sphere. But just outside of the thin
counterion cloud, we will have a tangential
component of the fluid velocity as specified by (202);
however there is still no normal component of fluid
velocity:

at r=a+-1: vr = 0 (206)

v = –(/)E (207)

(202) is based on (199), which is sometimes called
the “slip” boundary condition (as opposed to no-slip).
(199) is called that because -1 is so thin compared to
a that the fluid appears to slip over the surface of the
sphere.

If there is no pressure gradient imposed on the
distant fluid, i.e. if p = 0, then the solution to

equation (203), subject to (205) and (206) is potential
flow:

for ra+-1: v = 

and p = p

Recall from Theorem III, that the existence of a
potential implies v = 0. Then the right-hand side
of (203) vanishes identically: using Identity F.1

   2

0

      

0

v v v 0.


If the pressure is constant everywhere, then potential
flow automatically satisfies (203) and (204) becomes:

2 = 0 (208)

(205) becomes:  = –Uz as r 

(206) becomes: /r = 0 at r=a

The particular solution to (208) also turns out also to
be axisymmetric:

 
3

1
2 2

, cos
R

r U r
r


 

      
 

In particular, we will need:

at r=a: v = – (1/r)/ = – (3/2) U sin (209)

Finally, we need to satisfy (207). Using (201) and
(209) in (207), we conclude that

U = (/)E

In vector form, we can write:

a>>1:  





U E (210)

Thus, except for sign, this electrophoretic velocity of
a charged sphere through a stagnant fluid is identical
to the osmotic velocity of fluid through a stationary
solid membrane. Although we have derived this
result for a sphere, this result applies for any shape of
particle provided the counterion cloud is thin
compared to any radius of curvature of the particle
(Morrison, 1970).

Electrophoresis of Small Particles

Now let's consider the opposite extreme of a very
small particle compared to the thickness of the
counterion cloud. In other words, let a  0. In this
limit, we can treat the particle as a point charge. The
force acting on the particle by the applied electric
field is given by the definition of electric field:

Fel = QE

The particle will begin to move creating a drag force
which can be calculated from Stokes' law:

Fdrag = -6aU

The particle continues to accelerate until the drag
force exactly balances the electrostatic force and the
net force is zero:

Fel + Fdrag = 0

This terminal velocity represents the electrophoretic
velocity in the induced electric field:
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6

Q

a



U E (211)

Comparing (210) and (211), we see that both
electrophoretic velocities are proportional to electric
field. The proportionality constant is electrophoretic
mobility:

electrophor. mobility  U/E

which is positive if the particle moves in the same
direction as the electric field and negative if it moves
in the opposite direction.

Is the mobility of (211) different from (210)? To
compare them, we must first relate Q to . One
relationship between charge and zeta potential is
given by the Gouy-Chapman equation (138). This
was derived for a uniformly-charged, flat plate. It
also can be applied near the surface of a sphere which
is very large compared to the Debye length (i.e.
a>>1). However in the current problem, the sphere
is very small compared to the Debye length (i.e.
a<<1). The potential distribution is quite different
in this case.

If the particle is a point charge, it seems
reasonable to seek a solution in spherical coordinates
having the form (r). In spherical coordinates,
the linearized form of the Poisson-Boltzmann
equation (130) is

2 2
2

1 dd
r

dr drr

 
   

 

Appropriate boundary conditions are

as r:   0

at r=a:  = 

where once again  is the potential drop across the
diffuse cloud of counterions surround the point
charge. The particular solution to this problem is

( )
r

a e
r ae

r


   (212)

Let’s denote the charge on our “point charge” as Q.
Then global electroneutrality requires that the sum of
the this charge and the charge born by the counterion
cloud must vanish:

  24 0e

a

Q r r dr


   

Substituting (129) and (212)

 

2

2

2
2

2

4 1

8

8

a

a

a r

a

a
e

Ie
Q r r dr

kT

Ie
ae re dr

kT






 

 




 


 








 4 1Q a a   

When a<<1, we can neglect it, leaving

4Q a 

(211) becomes
2

3





U E

which is called Huckel's equation.

Electrophoresis of a Sphere of Arbitrary Size

In the derivation of both Smoluchowski's and
Huckel's equation, the distribution of ions within the
counterion cloud was computed using either the
Gouy-Chapman theory or the Debye-Huckel theory.
Both of these theories describe an

equilibrium double layer — ion concentrations given
by Boltzmann's equation (electrochemical
potential of ions is constant along a normal to
particle's surface).

In general, either ion migration in the applied electric
field or convection of charge can distort the cloud
away from equilibrium. For a more general
description of electrophoresis, we must abandon
Boltzmann's equation for describing the distribution
of ions. That is we must allow for a non-equilibrium
double layer:

Transport of ions occurs by convection, diffusion
and migration of charges in an electric field. In terms
of “driving forces,” the flux is given by:

 
convection diffusion

migration

i
i i i i i

z
c D c c

RT

 
 

    
 
  

J v E


F
(213)

where F/RT = e/kT

which is called the Nerst-Planck equation. Think of
it as Fick's law for electrolytes. The last term in this
equation represents migration of ions in the electric
field. It's form is obtained by multiplying the
terminal velocity by the ion concentration:

migr. flux:
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Uelci = miFci = (Di/kT)(zieE)ci

but instead of using Stokes equation for the mobility
(as we did to derive Huckel's equation), we used the
Nernst-Einstein equation.

Now to find the ion distributions, we solve the
steady-state ion continuity equations:

for i=1,2,...,n: .Ji = 0

where Ji is given by the Nernst-Planck equation

(213). At equilibrium, Ji = 0 and continuity is

automatically satisfied while the Nernst-Planck
equation reduces to Boltzmann's equation. If we are
not at equilibrium, we must determine the ion
distribution by solving coupled P.D.E.'s:

.{vci - Di[ci+(zieci/kT)]} = 0for i=1,...,n

2 = - (zieci) /

2v = p + (zieci)

.v = 0

As you can see, all of the variables are now badly
coupled. We have 5+n equations in 5+n unknowns
(v,,p,ci), where n is the number of ion species (n2).

Products of unknown appear so the equations are also
nonlinear. Boundary conditions are of the form:

at r=a: n.Ji = 0

 = 

v  Uel (no slip)

as r : ci  ci

  -r.E

v = 0

The terminal velocity Uel is determined such that the

net force acting on any portion of the system
vanishes:

F = Sn.da = 0

where  is the total stress tensor (viscous+Maxwell).
Numerical solutions of this problem for a sphere of
arbitrary radius have been published:

Reference – O’Brien & White, J. Chem. Soc.
Faraday Trans. II 74, 1607 (1978).

It turns out that the electrophoretic velocity is
proportional to the electric field (if it's not too big).
The proportionality constant is the electrophoretic
mobility

Uel = meE

where me = me(D+,D-,a,)

They report their results using the following
dimensionless quantities:

3

2
eM m






y  e/kT

In terms of these variables, Huckel's equation
becomes:

a 0: M = y

while Smoluchowski's equation becomes:

a : M = (3/2)y
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Although these two limiting cases bound the result
for small y, they do not bound the mobility for large
y.

Streaming Potential

So far in our discussion of
phenomena, we have considered the motion of either
fluid or solid that results from the application of an
electric field:

Electrophoresis, Electro-osmosis:

Now we would like to consider the inverse situation
in which relative motion across a charged interface
generates an electric field:

Streaming Potential,
Sedimentation Potential:

L>>a

k
-1
<<a

r z

Consider the pressure-driven flow through a large
circular capillary.

Fig. 1: Electrophoretic mobilities calculated by O’Brien & White (1978).

101

PDF generated

Although these two limiting cases bound the result
, they do not bound the mobility for large

electrokinetic
phenomena, we have considered the motion of either
fluid or solid that results from the application of an

E0  U0

Now we would like to consider the inverse situation
otion across a charged interface

U0  E0

a

driven flow through a large

–1 << a << L

Owing to the applied pressure drop, we generate a
fully developed parabolic velocity profile so familiar
for laminar flow:

   2 21

4
z

dP
v r r a

dz
 



The main idea is that this flow causes convection of
charge in the counterion cloud w
generate a current. However in the absence of
electrodes in the two reservoirs, there is no way to
form a complete electric circuit. So charge tends to
pile up in the reservoir — positive charges on one
side of the membrane and negative cha
other. Coulomb's law exerts a force on these charges
which tends to restore electroneutrality to the system
and to prevent any steady-state rate of accumulation
of charge.

Clearly any steady-state electrical current would
eventually lead to infinite charge separation and
infinite attractive forces. The only way to avoid this
is to have zero current at steady state. This is
achieved by an electric field which spontaneously
arises inside the bulk of the fluid which creates an
electrical current equal but opposite to the convective
current:

Itotal = Iconv + Ielec

: Electrophoretic mobilities calculated by O’Brien & White (1978).
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Owing to the applied pressure drop, we generate a
fully developed parabolic velocity profile so familiar

2 2v r r a 

The main idea is that this flow causes convection of
charge in the counterion cloud which tends to
generate a current. However in the absence of
electrodes in the two reservoirs, there is no way to
form a complete electric circuit. So charge tends to

positive charges on one
side of the membrane and negative charges on the
other. Coulomb's law exerts a force on these charges
which tends to restore electroneutrality to the system

rate of accumulation

state electrical current would
infinite charge separation and

infinite attractive forces. The only way to avoid this
at steady state. This is

achieved by an electric field which spontaneously
arises inside the bulk of the fluid which creates an
electrical current equal but opposite to the convective

elec = 0 (214)
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The electrostatic potential drop associated with this
induced electric field is called the streaming
potential. To calculate it, let's first calculate the
current generated by convection of charges inside the
cloud.

1

If the charge cloud is very thin compared to the
capillary radius, then we need to concentrate on the
velocity profile right next to the wall. Here the
velocity profile becomes linear:

for s<<a: vz(s) = s (215)a

where s  a–r (215)b

and
2

z

r a

dv a dP

dr dz

 
     

  
(215)c

Just like we can evaluate the volumetric flowrate by

integrating n.v, the net current Itotal (not to be

confused with the ionic strength) through any surface
S is just the integral of the normal component of the
current density over the surface:

total

S

I da  n i. [=] amps

In our case, we choose a disk of radius a whose
normal is parallel to the tube axis.

0
2

a
conv e zI v rdr  

Since =0 for most of the fluid (except for ra), we
can approximate this integral as shown by
substituting (215):

0
2conv eI a sds


    (216)

Since the charge density e vanishes outside the

cloud (which is a small fraction of a), the integrand is
zero over most of the domain; thus we can extend the
upper limit to  without introducing any additional
error. Next, we substitute Poisson's equation (194)
for the space charge density:

e = – d2eq/ds2 (217)

(217) into (216) and integrating by parts:

   

2

20
2

2 , 0 ,

eq

conv

eq eq

d
I a sds

ds

a z z

 
   

       
 



Substituting (198)

Iconv = –2a (218)

According to (214), this convective contribution to
the current must be balanced an electrical
contribution from an induced electric field. The
relationship between current and electric field is
given by Ohm's law for electrolyte solutions, which
takes the form of

ielec = KE

where K is called the specific conductance of the
solution. Integrating over the cross-section of the
tube:

2

0
2

a
elec z zI KE rdr a KE    (219)

where Ez = –/z = const = –/L

is required by (196), where L is the length of the
cylindrical pore. (215)c, (218) and (219) into (214):

2 2
2

d a dP
a K a

dz dz

   
         

   

Integrating over the length L of the capillary:

p
K


   



which is Smoluchowski's equation for streaming
potential  = (L) – (0). While we have derived
this using the geometry of a circular cylinder, the
same result applies for any shape (even a porous plug
of spherical particles), provided the local radius of
curvature a is everywhere large compared to the

Debye length. In particular:

exp
2

ze
a

kT

 
   

 

 Overbeek, 1952.
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